
innovators for industry

syncAXIS-DLL –
Application Programming Interface
syncAXIS control V1.8.0

2022-11-16Document info:
Doc. Rev. 1.9.20 en-US

SCANLAB GmbH

Siemensstr. 2a

82178 Puchheim

Germany

Tel.+49 (89) 800 746-0

Fax+49 (89) 800 746-199

info@scanlab.de

www.scanlab.de

© SCANLAB GmbH

(Doc. Rev. 1.9.20 en-US - 2022-11-16)

SCANLAB GmbH reserves the right to change the information in this document without notice.

No part of this document may be processed, reproduced or distributed in any form (photocopy, print, microfilm or by any other
means), electronic or mechanical, for any purpose without the written permission of SCANLAB GmbH.

All mentioned trademarks are hereby acknowledged as properties of their respective owners.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
Contents

3

innovators for industry

Contents

1 About this Manual ... 9
1.1 Related Documents ... 9
1.2 Manufacturer .. 9
1.3 Overview ... 10
1.4 Glossary .. 11

2 Software Development with the syncAXIS-DLL ... 16
2.1 Safety .. 16
2.2 About the SAFE Use of syncAXIS control – General Approach ... 18

syncAXIS control Safety Features .. 18
2.2.1 Identifying System Limits ... 19
2.2.2 Establishing Safety Mechanisms ... 19
2.2.3 Configuring Safe syncAXIS control Instances ... 20
2.2.4 Simulating and Improving Jobs .. 24

2.3 About the Main Structures of a syncAXIS-DLL-Based User Program (Exemplary) 25
2.3.1 Structure to Comply with when Defining Jobs ... 25

2.4 About Initializing syncAXIS control-based User Programs ... 26
2.5 About the syncAXIS control Simulation Mode .. 31
2.6 About Optimizing syncAXIS control-based User Programs .. 36

2.6.1 Possible Optimizations ... 36
2.6.2 Iterative Approach ... 38

2.7 About Processes at Run Time of the User Program ... 41
2.7.1 About the Buffers of the syncAXIS control Instances ... 42

Avoiding Buffer Underruns ... 42
2.7.2 About the Point in Time when Output Signals are actually set ... 45

2.8 About the Logging in syncAXIS control ... 47
2.9 About Automatically Controlling the Laser by syncAXIS control

(“Automatic Laser Control“) .. 48
2.9.1 Activation of the “Automatic Laser Control“ .. 48
2.9.2 Definition of the Channels and ActiveChannel ... 48
2.9.3 About how ActiveChannel Values along a Contour are Calculated 51
2.9.4 About Ramps ... 53

Example – Linear (Simple) Ramp ... 54
Example – Multi-part (more Complex) Ramp .. 57

2.9.5 About the “Contour-dependent speed calculation“ ... 60
2.10 About Heuristic and Characteristics for Speed Reductions .. 64
2.11 About Working with “Modules” ... 65
2.12 About the Mode “Manual Positioning“ ... 70

2.12.1 Allowed/Not Allowed syncAXIS control Functions .. 71
2.12.2 Example – Temporarily Releasing

the Positioning Stage and Changing the Target Positioning Stage 74

3 Functions Available in the API ... 76
3.1 Functional Overview .. 76

3.1.1 Configuration Functions (slsc_cfg_*) ... 76
syncAXIS control instance-related Functions .. 78
Functions for Changing the Configuration of the Present syncAXIS-DLL Instance 80
Functions for Registering “Callback Events“ ... 81

3.1.2 Job Functions (slsc_list_*) .. 85
Functions for Defining Job-Beginnings/Ends ... 85
Functions for Defining Jumps ... 85

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
Contents

4

innovators for industry

Functions for Defining Markings .. 87
[*]dashed[*] Functions ... 91
Functions for Changing Target Point Coordinates .. 92
Functions for Defining Ramps (slsc_list_[para/multi_para]*-Functions) 92
Functions for Setting Signals .. 93
Functions for Changing Speeds .. 93
Function for Changing Minimum Speeds ... 93
Functions for Changing Trajectory planning Values .. 94
Functions for Changing the Behavior of Blending Curves ... 94
Function for the “Contour-dependent Speed Calculation“ ... 94
Function for Setting the Value of a Free Variable on the RTC6 95
Function for Influencing the Laser Pulse Output by HalfPeriod/PulseLength 95
Functions for “Modules” .. 95

3.1.3 Control Functions (slsc_ctrl_*) ... 96
Laser-related Functions ... 96
Execution-related Functions .. 97
Correction File-related Functions .. 99
Error-related Functions ... 99
Functions for Querying Measured Values ... 99
Functions Only for Mode “Manual Positioning“ ... 99
Functions for Managing the Value of a Free Variable on the RTC6 99
Functions for Optimizing Parameter Values .. 100
Functions for Starting/Ending the Mode “Manual Positioning“ 100
Functions for Querying Positions .. 100
Simulation Setting-related Function ... 100
Functions for Setting Signals .. 100
Function for Influencing the Laser Pulse Output by HalfPeriod/PulseLength 100

3.1.4 Utility Functions (slsc_util_*) ... 101
RTC6 board-related Function .. 101

3.2 Alphabetical Overview .. 102
3.3 Function Reference ... 114

3.3.1 General Structure of the Reference Tables ... 114
3.3.2 Data Types of the syncAXIS-DLL Functions ... 115
3.3.3 Reference Tables .. 117

slsc_cfg_acquire_stage (deprecated) .. 117
slsc_cfg_delete ... 118
slsc_cfg_delete_trajectory_config ... 119
slsc_cfg_get_calculation_dynamics_jump_scan_device .. 120
slsc_cfg_get_calculation_dynamics_mark_scan_device .. 121
slsc_cfg_get_calculation_dynamics_stage .. 122
slsc_cfg_get_dynamic_limits_scan_device .. 123
slsc_cfg_get_dynamic_limits_stage .. 124
slsc_cfg_get_dynamic_violation_reaction ... 125
slsc_cfg_get_field_limits_scan_device .. 126
slsc_cfg_get_field_limits_stage .. 127
slsc_cfg_get_jump_time ... 128
slsc_cfg_get_mode ... 130
slsc_cfg_get_operation_status ... 131
slsc_cfg_get_scan_device_dynamic_monitoring_level .. 132
slsc_cfg_get_simulation_setting ... 133
slsc_cfg_get_stage_dynamic_monitoring_level .. 134
slsc_cfg_get_sync_axis_version .. 135

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
Contents

5

innovators for industry

slsc_cfg_get_trajectory_config ... 135
slsc_cfg_initialize_copy .. 136
slsc_cfg_initialize_from_file .. 137
slsc_cfg_register_callback_job_end_planned .. 139
slsc_cfg_register_callback_job_finished_executing ... 140
slsc_cfg_register_callback_job_is_executing ... 141
slsc_cfg_register_callback_job_loaded_enough .. 142
slsc_cfg_register_callback_job_progress_planned .. 143
slsc_cfg_register_callback_job_start_planned .. 144
slsc_cfg_reinitialize ... 145
slsc_cfg_reinitialize_from_file ... 147
slsc_cfg_release_stage (deprecated) ... 149
slsc_cfg_select_heuristic ... 152
slsc_cfg_select_stage .. 153
slsc_cfg_select_stage_axis (deprecated) ... 154
slsc_cfg_set_bandwidth ... 155
slsc_cfg_set_calculation_dynamics_jump_scan_device ... 156
slsc_cfg_set_calculation_dynamics_mark_scan_device ... 158
slsc_cfg_set_calculation_dynamics_stage ... 160
slsc_cfg_set_contour_dependent_speed_control_2d .. 162
slsc_cfg_set_dynamic_limits_scan_device ... 164
slsc_cfg_set_dynamic_limits_stage ... 165
slsc_cfg_set_dynamic_violation_reaction ... 166
slsc_cfg_set_field_limits_scan_device ... 167
slsc_cfg_set_field_limits_stage ... 168
slsc_cfg_set_jump_speed ... 170
slsc_cfg_set_list_handling_mode ... 171
slsc_cfg_set_list_handling_mode_with_context ... 173
slsc_cfg_set_mark_speed ... 174
slsc_cfg_set_matrix_and_offset .. 175
slsc_cfg_set_mode ... 176
slsc_cfg_set_part_displacement ... 177
slsc_cfg_set_rot_and_offset_2d ... 178
slsc_cfg_set_scan_device_dynamic_monitoring_level ... 179
slsc_cfg_set_simulation_setting ... 180
slsc_cfg_set_stage_dynamic_monitoring_level ... 181
slsc_cfg_set_trajectory_config .. 182
slsc_ctrl_disable_laser .. 183
slsc_ctrl_enable_laser ... 184
slsc_ctrl_follow ... 185
slsc_ctrl_get_error .. 186
slsc_ctrl_get_error_count ... 187
slsc_ctrl_get_exec_state ... 188
slsc_ctrl_get_free_variable .. 189
slsc_ctrl_get_job_characteristic .. 190
slsc_ctrl_get_scan_device_position ... 191
slsc_ctrl_get_simulation_filename .. 192
slsc_ctrl_get_stage_position ... 193
slsc_ctrl_get_syncaxis_simulation_filename .. 194
slsc_ctrl_get_value ... 195
slsc_ctrl_is_list_input_buffer_full .. 196
slsc_ctrl_laser_signal_off .. 197

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
Contents

6

innovators for industry

slsc_ctrl_laser_signal_on .. 198
slsc_ctrl_move_scanner_abs ... 199
slsc_ctrl_move_stage_abs ... 200
slsc_ctrl_refresh_correction_file ... 201
slsc_ctrl_select_correction_file .. 202
slsc_ctrl_set_free_variable .. 203
slsc_ctrl_set_laser_pulses ... 204
slsc_ctrl_start_execution .. 205
slsc_ctrl_stop .. 206
slsc_ctrl_stop_controlled .. 207
slsc_ctrl_unfollow .. 208
slsc_ctrl_write_analog_x ... 209
slsc_ctrl_write_digital_out .. 210
slsc_ctrl_write_digital_out_mask .. 211
slsc_list_arc_abs ... 212
slsc_list_begin .. 214
slsc_list_begin_absolute ... 215
slsc_list_begin_module .. 217
slsc_list_begin_relative ... 218
slsc_list_circle_2d_abs .. 220
slsc_list_dashed_arc_abs .. 221
slsc_list_dashed_circle_2d_abs ... 223
slsc_list_dashed_mark_abs ... 225
slsc_list_end ... 226
slsc_list_jump_abs .. 227
slsc_list_jump_abs_min_time ... 228
slsc_list_mark_abs .. 229
slsc_list_multi_para_arc_abs .. 230
slsc_list_multi_para_circle_2d_abs ... 231
slsc_list_multi_para_dashed_arc_abs ... 232
slsc_list_multi_para_dashed_circle_2d_abs .. 234
slsc_list_multi_para_dashed_mark_abs .. 236
slsc_list_multi_para_mark_abs ... 238
slsc_list_para_arc_abs .. 239
slsc_list_para_circle_2d_abs ... 241
slsc_list_para_dashed_arc_abs ... 243
slsc_list_para_dashed_circle_2d_abs .. 245
slsc_list_para_dashed_mark_abs .. 247
slsc_list_para_disable ... 249
slsc_list_para_enable .. 250
slsc_list_para_jump_abs ... 251
slsc_list_para_jump_abs_min_time .. 252
slsc_list_para_mark_abs ... 253
slsc_list_para_playback_module ... 254
slsc_list_playback_module .. 255
slsc_list_set_approx_blend_limit .. 257
slsc_list_set_calculation_dynamics_jump_scan_device ... 258
slsc_list_set_calculation_dynamics_mark_scan_device ... 259
slsc_list_set_contour_dependent_speed_control_2d .. 260
slsc_list_set_free_variable ... 261
slsc_list_set_jump_speed .. 262
slsc_list_set_laser_on_move ... 263

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
Contents

7

innovators for industry

slsc_list_set_laser_pulses .. 264
slsc_list_set_mark_speed .. 265
slsc_list_set_matrix_and_offset .. 266
slsc_list_set_min_mark_speed .. 267
slsc_list_set_rot_and_offset_2d .. 268
slsc_list_suppress_spotdistance_control ... 270
slsc_list_unsuppress_spotdistance_control ... 271
slsc_list_wait_with_laser_off .. 272
slsc_list_wait_with_laser_on ... 273
slsc_list_write_analog_x ... 274
slsc_list_write_digital_out .. 276
slsc_list_write_digital_out_mask .. 277
slsc_util_reset_pcie ... 278

4 Standard Return Values of the syncAXIS-DLL Functions ... 279

5 Error Codes with slsc_ctrl_get_error, Log File and Console .. 282

6 Structures ... 289
slsc_GeometryConfig ... 289
slsc_MarkConfig ... 293
slsc_MultiParaTarget .. 297
slsc_ParaSection ... 298
slsc_TrajectoryConfig ... 299
VersionInfo .. 299

7 Enumerated Types enum ... 300
slsc_AnalogOutput ... 300
slsc_BlendModes .. 301
slsc_DynamicsMonitoringLevel ... 303
slsc_DynamicViolationReaction .. 304
slsc_ExecState .. 305
slsc_JobCharacteristic ... 306
slsc_ListHandlingMode ... 312
slsc_MeasurementSignal .. 313
slsc_OperationMode .. 314
slsc_OperationStatus .. 315
slsc_PositionType ... 315
slsc_ScanDevice .. 316
slsc_SimulationSetting ... 317
slsc_SplineModes ... 318
slsc_Stage .. 320

8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems 321
8.1 About this Appendix ... 321
8.2 Usage of syncAXIS control V1.2.4 and Higher ... 324

8.2.1 Prerequisites for this Appendix .. 324
8.2.2 Adapting syncAXISConfig.xml for syncAXIS control V1.2.4 and Higher 324

Step 1 of 2: Adapting syncAXISConfig.xml Technically ... 324
Step 2 of 2: Adapting syncAXISConfig.xml in Regards to Content 324

8.2.3 Further Notes on the Use of syncAXIS control V1.2.4 and Higher 331
8.3 About Transformations in syncAXIS control V1.2.4 and Higher .. 332

9 Appendix B: Application Note – Handling Lists with syncAXIS control ... 335
9.1 List Handling Mode “ReturnAtOnce” .. 337
9.2 List Handling Mode “RepeatWhileBufferFull” .. 339

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
Contents

8

innovators for industry

9.3 List Handling Mode “RepeatWhilePredicate” .. 343

10 Appendix C: Application Note – Marking Texts by Using Modules ... 344

11 Appendix D: Application Note – Avoiding Buffer Underruns by Using Modules 347

12 Appendix E: Application Note – C# ... 350
12.1 Differences in the syncAXIS-DLL function signatures ... 350

12.1.1 Notation der Datentypen ... 350
12.1.2 Pointer-Replacements for C# ... 350

12.2 Differences in the Use of Callback Functions ... 351
12.3 Code Example 1 (C#) .. 352
12.4 Code Example 2 (C#) .. 357

13 Appendix F: Reference of syncAXISConfig.xml Tags ... 358
13.1 xml-Structure Overview ... 358
13.2 xml Tags .. 361

14 Change Index ... 476

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
1 About this Manual

9

innovators for industry

1 About this Manual

This manual describes the SCANLAB syncAXIS-DLL
and its usage to develop and to execute
user programs for the synchronous control of a laser,
a scan head (excelliSCAN only) and a positioning
stage in a laser-scan system.

The syncAXIS-DLL (32-bit version and 64-bit version)
is a part of the syncAXIS control-software package.

For developing user programs user programs it
provides a programming interface (API) in the form of
functions. These allow, among other things:

• Extensive configuration possibilities for system
parameters as well as for the syncAXIS-DLL itself
(calculation of motion data only for the
scan heads, only positioning stage, or both)

• Definition of processing Jobs (for example,
labeling patterns)

• Loading, execution and stopping Jobs – also in a
simulation mode as file output

• Status monitoring of Jobs

• Registering Callback events

Precondition for the usage of the syncAXIS-DLL:

• Installed, configured and calibrated hardware
(see Figure 1, page 10): scan head(1) (excelliSCAN
only), positioning stage, ACS components, RTC6
PCI Express Board, power supply, cables, PC,
Dongle

• Operating system: MS Windows 7, 8, 10
(32-bit and 64-bit variants)

• Installed syncAXIS control-software package(2)

• Installed ACS software package

1.1 Related Documents

• RTC6 Manual

• “Installation of SCANLAB XL SCAN Components
and Initial Operation of the
XL SCAN System” Manual

• “syncAXIS Viewer” Manual

• “syncAXIS Configurator” Manual

• “syncAXIS Master-Slave-Synchronizer” Manual

1.2 Manufacturer

SCANLAB GmbH
Siemensstr. 2a
82178 Puchheim
Germany
Tel. +49 (89) 800 746-0
Fax +49 (89) 800 746-199
info@scanlab.de
www.scanlab.de (1) syncAXIS-DLL can be used for scan head calibration.

(2) Among others, the package contains RTC6 files
(RTC6DAT.dat, RTC6DLL.dll, RTC6OUT.out, RTC6RBF.rbf).
These files must not be replaced by those RTC6 files
which have been delivered along with the RTC6 board
itself or have been downloaded from the SCANLAB
website.

Notice!
Carefully read the document “syncAXIS control
Software License Agreement” before installing
and using syncAXIS control. This agreement
defines matters such as terms of usage,
warranty information and liability disclaimers. If
you have questions, simply contact SCANLAB.

Caution!
Read and observe all safety instructions in this
manual!

SCANLAB accepts no liability for damages or
consequential losses resulting from non-obser-
vance of this manual, in particular the safety
instructions contained herein.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
1 About this Manual

10

innovators for industry

1.3 Overview

A scenario for the application of syncAXIS-DLL (as a
part of the syncAXIS control-software package)
shows Figure 1, page 10.

The simultaneous control of a 2D scan head and a
mechanical XY positioning stage with two servo axes
is illustrated. This combined system increases the
working area in relation to the scan head
working field and the marking results do not exhibit
stiching errors.

1
syncAXIS-DLL application scenario. ACS: see page 11.
The illustrated system has 1 positioning stage only. Optionally, an additional positioning stage can be added
(requires no additional RTC6 board nor an additional SL2-100 to EtherCAT converter).

syncAXIS

2

1
Laser

ACS-DLL

API SCANLAB
RTC6

*.ct5

SCANLAB Dongle

SL2-100

y S
tage

x Stage

y Sc
an h

ead

x Scan headEtherCAT

EtherCAT

SL2-100

Ethernet

ACS motor drive

ACS SL2-100 to EtherCAT converter

ACS motion controller

XY positioning stage

2nd scan head connector

USB port

SCANLAB scan head
(excelliSCAN only)

SCANLAB syncAXIS
software package

API of syncAXIS-DLL

User program

Windows PC

Legend
1. Coordinate system of the scan head
2. Coordinate system of the XY positioning stage

Scope of this document

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
1 About this Manual

11

innovators for industry

1.4 Glossary

ACS Designates the manufacturer of machine control systems whose components
must be used at present.

ACS Motion Controller XL SCAN component from ACS, see Figure 1, page 10.

API Abbreviation of Application Programming Interface. Program part (here: of the
syncAXIS-DLL) which is available for other programs for connecting to the system
(here: functions of the syncAXIS-DLL). See Chapter 3 ”Functions Available in the
API”, page 76.

Buffer Designates syncAXIS-DLL-internal temporary memories.
See Chapter 2.7 ”About Processes at Run Time of the User Program”, page 41.

Buffer underrun After execution start, the RTC6 board has processed all RTC6 micro vector
commands in its list memory because the syncAXIS-DLL has been too slow in the
calculation and transmission of further RTC6 micro vector commands. See also
Figure 11, page 41. A Buffer underrun occurs, for example, when the
Input buffer is filled with a lot of data relative to the execution time (that is, short
vector segments and high marking speed). New data is not written to the
Output buffer in time. As a consequence, the RTC6 board cannot continue to
execute its list and sends a static position continuously (“hard stop”). This results
in exceeding a system dynamic limit. An Buffer underrun puts XL SCAN into an
error state. As a rule, an error at the ACS axes is also detected, because there has
been a sudden (acceleration and jerk unrestricted) change in speed (the last
approached position is outputted). For possible measures to avoid an
Buffer underrun, see Chapter 2.7.1 ”About the Buffers of the
syncAXIS control Instances”, page 42.

Callback event One of several syncAXIS-DLL-internal events in Figure 12, page 43 and Table on
page 81 that occur when a Job goes through its calculation, transfer and
execution status.

Callback function Designates a user-supplied function that is to be executed when a certain
“Callback event“ occurs. A “Callback function“ is registered to the
syncAXIS control instance via a Function for registering “Callback events”.
Therefore, it must comply to a dictated function signature (slsc_JobCallback or
slsc_ExecTimeCallback).

Configuration function

(slsc_cfg_*)

Designates a function in the API with the prefix slsc_cfg_. These functions serve,
for example, to manage the configuration of the syncAXIS control instance and
to configure Event Callbacks. See Chapter 3.1.1 ”Configuration Functions
(slsc_cfg_*)”, page 76.

Control function

(slsc_ctrl_*)

Designates a function in the API with the prefix slsc_ctrl_.
These functions serve to influence the user program flow, for example, to start/to
stop the execution, to query errors, to set the jump speed and marking speed etc.
See Chapter 3.1.3 ”Control Functions (slsc_ctrl_*)”, page 96.

Dongle Short for “SCANLAB USB dongle for XL SCAN”. USB copy protection device which
contains unique licensing information, see Multi-Instance and Multi-Stage.
No storage device! As of syncAXIS control  V1.2, another version is available
(#139941 “Office dongle”). This allows Sky Writings to use the software without
hardware connection on the local PC, for example, to create simulation files (that
is, generate control values).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
1 About this Manual

12

innovators for industry

Execution Layer syncAXIS-DLL-internal submodule, which is responsible for the communication
with the RTC6 board and its monitoring. Its state can be queried with
slsc_ctrl_get_exec_state. With an slsc_ctrl_start_execution call, it triggers the
Job execution.

Function for registering
“Callback events”

One of the syncAXIS-DLL-Configuration functions with prefix
slsc_cfg_register_callback_, see page 81. For every “Callback event“ there is a
corresponding “Function for registering “Callback events”“ where the to-be-
executed “Callback function” is specified. Thereby, Job-related information can
be captured and responded to.

Handle Computer programming term: abstract reference to a resource. In this manual,
this term refers to a certain syncAXIS control instance (most of the time). Its
Handle value is assigned by an Initialization function. With the (most)
syncAXIS control functions, the Handle value of the desired target-
syncAXIS control instance must be specified.

Heuristic The following applies to  V1.5.0:

• Is a syncAXIS-DLL-internal algorithm

• Only effective in Operation mode ScannerAndStage

• Requires at least 1 defined characteristic, see DynamicReductionFunction

• Evaluates Jump Segments and Mark Segments
– Optionally only Jump Segments, if in syncAXISConfig.xml is set:

<cfg:HeuristicForJumpsOnly>true</cfg:HeuristicForJumpsOnly>

• See also Chapter 2.10 ”About Heuristic and Characteristics for Speed Reduc-
tions”, page 64.

The Heuristic:

(1) Determines the spatial extent of each Segment = distance between
starting point and end point (exception: diameter of the circle with circular
Segments ([*]arc[*], [*]circle[*]) which sweep more than a semicircle).

(2) Checks the characteristic (= DynamicReductionFunction) if there is a corre-
sponding Velocity value for the result from (1) (= Length value).

(3) Only if the Velocity value from (2) is smaller than the original marking speed:
the Heuristic reduces the marking speed of the Segment to this Velocity value.

Initialization function Collective term for syncAXIS-DLL functions which create a
syncAXIS control instance: slsc_cfg_initialize_copy and
slsc_cfg_initialize_from_file as well as slsc_cfg_reinitialize and
slsc_cfg_reinitialize_from_file. See also Chapter 2.4 ”About Initializing
syncAXIS control-based User Programs”, page 26.

Input buffer syncAXIS-DLL-internal temporary memory at the start of the processing chain.
See Buffer and Figure 11, page 41 in Chapter 2.7 ”About Processes at Run Time
of the User Program”, page 41.

Job Designates a mandatory sequence of Job functions.
See also Section ”Structure to Comply with when Defining Jobs”, page 25.

Job-ID Is returned by slsc_list_begin, slsc_list_begin_absolute and
slsc_list_begin_relative.

Job function

(slsc_list_*)

Designates a function in the API with the prefix slsc_list_. These functions serve
to define Jobs (for example, for markings, jumps as well as to switch signals at
output ports etc.). See Chapter 3.1.2 ”Job Functions (slsc_list_*)”, page 85.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
1 About this Manual

13

innovators for industry

Job queue Designates a sequence of Jobs (unlimited number). A syncAXIS control instance
manages one Job queue at a time only. It is created during initialization and is
initially empty. See also Figure 13, page 44.

Job status See Figure 12, page 43.

Jump command syncAXIS-DLL-function that serves to move the scan system axes to a new
position while the laser is off. Example: [*]jump[*].

“Laser Active” Operation See Figure 42 as well as RTC6 Manual, Chapter 7.4 ”Laser Control”, page 183, in
particular Signals for “Laser Active” Operation, page 185.
In conclusion, the laser emits.

“Laser Standby” Oper-
ation

See Figure 42 as well as RTC6 Manual, Chapter 7.4 ”Laser Control”, page 183, in
particular Signals for “Laser Standby” Operation, page 185.
In conclusion, the laser does not emit.

List This term is reserved for a direct context with RTC boards. Therefore, in direct
context with the syncAXIS-DLL it is not used in this manual. However, compare
to prefix slsc_list_ of Job functions.

LSB Least Significant Bit.

Mark function syncAXIS-DLL-function that serves to trigger a marking motion while the laser is
switched on. Examples: [*]mark[*], [*]arc[*], [*]ellipse[*].

Module A Job that has been recorded in simulation mode by slsc_list_begin_module,
see Chapter 2.11 ”About Working with “Modules””, page 65.

Motion decomposition Applies to Operation mode “ScannerAndStage“ only.
Following the Trajectory planning (= after the laser spot path has been calcu-
lated; see Figure 11, page 41), splitting occurs according to the
FilterBandwidth value to a portion to be carried out by the scan head and a portion
to be carried out by the positioning stage.

(implies that utilized scan head
working field gets smaller)

Motion portion
to be executed

by XY stage

bigger
value

smaller
value

Motion portion
to be executed
by scan head

Motion decomposition by
FilterBandwidth value

Calculated
vector lengths

FilterBandwidth value

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
1 About this Manual

14

innovators for industry

MSB Most Significant Bit.

Multi-Head Designates an XL SCAN system where 1 syncAXIS control instance controls more
than one excelliSCAN scan head and 1 positioning stage.

Multi-Instance Designates the (optional) ability to run more than one syncAXIS control instance
on a PC at the same time. Requires a Dongle that explicitly supports this option(a).
Multi-Instance and Multi-Head are basically compatible(b).

Multi-Stage Designates the (optional) functionality of the syncAXIS control instance to be
able to change the positioning stage. Requires a Dongle that explicitly supports
this option.

Operation mode See enum slsc_OperationMode.

Output buffer syncAXIS-DLL-internal temporary memory at the end of the processing chain. See
Buffer and Figure 11, page 41 in Chapter 2.7 ”About Processes at Run Time of
the User Program”, page 41.

Ramp Designates a variation of the output values at ActiveChannel along curves
(curve = marking pattern consisting of straight and/or curved parts - compare to
Trajectory). See Chapter 2.7 ”About Processes at Run Time of the User Program”,
page 41.

Segment Sections of the Trajectory which have been defined by the User specifying target
coordinates by the following Job functions (slsc_list_*):

• See To define jumps to target coordinates, page 86

• See To define markings to target coordinates, page 86

Accordingly, there is the Segment type:

• Jump Segment

• Mark Segment

Simulation Setting State of the syncAXIS control instance with respect to
simulation mode/hardware mode, see slsc_SimulationSetting.
See also Chapter 2.5 ”About the syncAXIS control Simulation Mode”, page 31.

Subcycle Switching Feature of current RTC6 Software Packages, which is also used by the
[*]dashed[*] Functions. This allows the RTC6 board to switch the laser up to 20×
at each microstep (10 µs; see RTC6 Manual, Chapter 7.1.2 ”Microstepping”,
page 139).

syncAXIS control instance A software object which is created in the PC-RAM when a valid syncAXISConfig.xml
is called by a syncAXIS control-based user program.
A syncAXIS control instance is configured for either the hardware mode or the
simulation mode, see Chapter 2.4 ”About Initializing syncAXIS control-based
User Programs”, page 26.
Every syncAXIS control instance can be addressed by a unique Handle.

syncAXISConfig.xml XML configuration file. Although the file name can be freely chosen, it is denom-
inated as “syncAXISConfig.xml” throughout this document. The complete tag
descriptions can be found in Chapter 13 ”Appendix F: Reference of
syncAXISConfig.xml Tags”, page 358.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
1 About this Manual

15

innovators for industry

syncAXISSysConfig.xml Omitted for syncAXIS control-software package  V1.2:
XML system configuration file.

Trajectory Curve with time parameterization.

Trajectory planning See Figure 11, page 41.

User Designates a person (= “system programmer”) who develops user programs
using the syncAXIS control software package.
Not meant is the “user or operator of a syncAXIS control system”.

Utility Function

(slsc_util_*)

Designates a function in the API with the prefix slsc_util_.
These functions are for special purposes outside the regular syncAXIS control
operation. See Chapter 3.1.4 ”Utility Functions (slsc_util_*)”, page 101.

(a) The number of allowed syncAXIS control instancees is coded on the Dongle.

(b) Not compatible with certain special systems where 2 syncAXIS control instancees on a single PC control 2 master/slave
connected RTC6 boards that feed into the same EtherCAT network.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

16

innovators for industry

2 Software Development with the syncAXIS-DLL

2.1 Safety

For developing syncAXIS control-based
user programs, observe the security concept of your
system control.

Make sure that neither the laser is not switched on
unexpectedly nor the positioning stage is moved
unexpectedly.

Notes

• For a quick start the syncAXIS control-software
package includes the “Installation_Project”
(source code in C++). See also “Installation of
SCANLAB XL SCAN Components and Initial
Operation of the XL SCAN System” Manual.

Warning!
Risk of injury due to laser radiation! Comply with
laser safety regulations!

Warning!
Risk of injury due to laser radiation!
slsc_cfg_initialize_from_file and
slsc_util_reset_pcie can lead to undefined
states of the RTC6 board(s) in which the laser
could be switched on unexpectedly! Make sure
that the laser is switched off before calling these
functions!

Caution!
Make sure that laser safety is ensured in the
entire system. In the safety concept of your
system control, take into account that the RTC
laser control signals are enabled by
slsc_cfg_initialize_from_file and
slsc_ctrl_enable_laser.

Caution!
Make sure that laser safety is ensured in the
entire system. In the safety concept of your
system control, take into account that the laser
in on during Job execution.

Warning!
Risk of injury due to positioning stage
movement! No persons in the danger zone!

Caution!
Risk of property damage due to positioning
stage movement! No foreign objects in the
danger zone!

Caution!
A moving positioning stage poses mechanical
hazards. There are risks of injuries to fingers and
hands from crushing.
In the safety concept of your system control,
take into account that
slsc_ctrl_start_execution can move the
positioning stage (possibly with a certain delay).
Make sure that all bystanders keep sufficient
distance to the appliance during execution.

Warning!
Code sections in this manual must never be
executed on actual XL SCAN systems without
prior adaptation and simulation. Otherwise
there is a risk of personal injury and damage to
property. Disclaimer: SCANLAB accepts no
liability for damages or consequential losses
resulting from non-observance of this warning.
SCANLAB does not take any responsibility on the
correctness or functionality of these code
sections.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

17

innovators for industry

2
Ensure the prerequisites that syncAXIS control  V1.2 can pass limited control values to ACS Motion Controller!

1 In syncAXISConfig.xml:
<cfg:DynamicViolationReaction>

AbortImmediately
</cfg:DynamicViolationReaction>

syncAXIS control

Risk has been
minimized to
damage the
positioning stage

Positioning
stage

may be
damaged!

Control values
which are limited

Some control values may
possibly exceed the

dynamic limit values
of the positioning stage

Some control values may
possibly exceed the

dynamic limit values
of the positioning stage

Correctly
configured?

ACS
Safety

features

Correctly
configured?

Correctly
configured?

Correctly
configured?

ACS Motion Controller
ACS

configuration
ACS

configuration

No Yes

No Yes No Yes

No Yes
syncAXIS control
passes
control values
which are limited

Legend
1. User entries in syncAXISConfig.xml. syncAXIS control uses to monitor working field and dynamics as:

– scan device dynamic limits the DynamicLimits values, page 388
– scan device working field limits the FieldLimits values, page 395
– scan device monitoring criterion the MonitoringLevel value, page 397
– positioning stage dynamic limits the FieldLimits values, page 454
– positioning stage working field limits the DynamicLimits values, page 456
– positioning stage monitoring criterion the MonitoringLevel values, page 452
– reaction on exceedances the DynamicViolationReaction values, page 365

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

18

innovators for industry

2.2 About the SAFE Use of
syncAXIS control – General
Approach

The syncAXIS control software can be flexibly
adapted to different laser scan system hardware
components with configuration parameters.
syncAXIS control-based user programs can also be
optimized for throughput and accuracy with addi-
tional parameters.

However, this openness to customization and optimi-
zation means that users must configure
syncAXIS control very carefully. Only then can the
built-in safety mechanism become effective at which
the control values transmitted to the
ACS Motion Controller are limited in a way that
further following mechanisms could prevent damage
as well, see Figure 2, page 17 and Section
”syncAXIS control Safety Features”, page 18.

Damage from such improper control may include:

• Injuries to personnel (for example, from laser
radiation or by positioning stage movements)

• Damage to the laser scan system (for example, by
vignetting at the scan head and objective, or
from unrestrained excursions of the positioning
stage against its stop)

• Increased production costs (for example, due to
production process interruptions or when
workpieces are rendered unusable due to missing
or truncated markings)

To prevent such damage, absolutely conduct the
following steps before running the first
user programs on your laser scan system:

• Identifying System Limits, page 19

• Establishing Safety Mechanisms, page 19

• Configuring Safe syncAXIS control Instances,
page 20

• Simulating and Improving Jobs, page 24

syncAXIS control Safety Features

As of syncAXIS control  V1.2, the syncAXISConfig.xml
tag DynamicViolationReaction is available as an essential
safety feature(1).

The DynamicViolationReaction value determines the
reaction to limit value exceedances.

These limit value exceedances may include

• working field violations as well as

• dynamic violations of

• scan devices and

• positioning stages.

Which limit value exceedances are to be specifically
monitored (“monitoring criteria“), is set in the
syncAXISConfig.xml separately for scan devices and
positioning stages under:

• <cfg:Configuration>  <cfg:ScanDeviceConfig> 

<cfg:MonitoringLevel>

• <cfg:Configuration>  <cfg:StageConfig> 

<cfg:MonitoringLevel>

The exact reaction to such limit value exceedances is
determined by the DynamicViolationReaction .value.
Possible reactions are to create [WARN] log file lines
(WarningOnly), an immediate interruption of the
movement (“emergency stop“; AbortImmediately) or an
attempt to perform a controlled deceleration
movement (StopAndReport).

(1) Remark on syncAXIS control  V1.1:
these version only create [WARN] log file lines. The
movement is stopped abruptly, if the
ACS Motion Controller has been actually unable to
follow the trajectory due to the limit value exceedance.
Then both systems, syncAXIS control and
ACS Motion Controller, are set to an error state.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

19

innovators for industry

2.2.1 Identifying System Limits

Identify the real-world limits of your XL SCAN system
– for example, by referencing the corresponding user
manuals or by asking the respective manufacturers:

• usable positioning stage working range

• max. positioning stage speed

• max. positioning stage acceleration

• max. positioning stage jerk

• max. usable scan head working field (that is,
max. deflection angle and max. image field,
depending on the used objective)

• max. galvanometer scanner speed(1)

• max. galvanometer scanner acceleration(1)

• max. galvanometer scanner jerk(1)

• max. allowed laser power (and laser power
density)

The positioning stage limits depend on the used
motor model and the used axis servos.

2.2.2 Establishing Safety
Mechanisms

Establish safety mechanisms to prevent personnel
injuries and material damage:

• Employ appropriate safety mechanisms, safety
warnings and protective gear to sufficiently
protect against the radiation of the used working
laser.

• Implement appropriate safety mechanisms to
sufficiently prevent personnel injuries due to
positioning stage motions.

• Possibly in consultation with manufacturers of
the positioning stage and its axis servos,
implement mechanisms to ensure compliance
with the limits of the positioning stage (for
example, by automatic braking or shutting down
the positioning stage). This way, you can prevent
positioning stage damage, as well as related
consequential damage.

• If needed, implement safety mechanisms to
ensure that laser power does not exceed the
allowed range.

(1) This limit value is typically predefined by SCANLAB in
syncAXISConfig.xml and generally does not need to be
changed there.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

20

innovators for industry

2.2.3 Configuring Safe
syncAXIS control Instances

Notes

• For syncAXIS control  V1.2, the XML system
configuration file syncAXISSysConfig.xml is omitted.

• For all details on the syncAXISConfig.xml, see
Chapter 13 ”Appendix F: Reference of
syncAXISConfig.xml Tags”, page 358.

In the syncAXISConfig.xml, correct planning
parameter values and monitoring limit values for the
to-be-used scan devices and positioning stages must
be entered.

• (1) Planning parameters for the scan devices,
page 20

• (2) Monitoring limit values for the scan devices,
page 20
– a. Scan device working fields, page 20
– b. Scan device dynamic limits, page 21

• (3) Planning parameters for the positioning
stages, page 21

• (4) Monitoring limit values for the positioning
stages, page 21
– a. Positioning stage working fields, page 21
– b. Positioning stage dynamic limits, page 22

(1) Planning parameters for the scan devices

Caution! syncAXIS control uses these values to
plan trajectories for the Operation modes
“ScannerOnly“ and “ScannerAndStage”.
Make sure that the entered acceleration and jerk
values are correct. For velocity values, see page 390.

<cfg:Configuration>

<cfg:ScanDeviceConfig>

<cfg:CalculationDynamics>

<cfg:MarkDynamics>
<cfg:Acceleration>

<cfg:Jerk>

<cfg:JumpDynamics>
<cfg:Acceleration>

<cfg:Jerk>

(2) Monitoring limit values for the scan devices

a. Scan device working fields

<cfg:Configuration>

<cfg:ScanDeviceConfig>

<cfg:FieldLimits>
<cfg:XDirection …>(1)
<cfg:YDirection …>(1)

These values are used for monitoring only. If as
scan device-MonitoringLevel the monitoring criterion
Position , Velocity, Acceleration or Jerk is entered,

<cfg:Configuration>

<cfg:ScanDeviceConfig>

<cfg:MonitoringLevel>
Position

</cfg:MonitoringLevel>

then exceedances automatically trigger the reaction
defined in DynamicViolationReaction (WarningOnly OR
AbortImmediately OR StopAndReport).

(1) The tag has a Unit attribute value that is, the unit can
be set.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

21

innovators for industry

b. Scan device dynamic limits

<cfg:Configuration>

<cfg:ScanDeviceConfig>

<cfg:DynamicLimits>
<cfg:Velocity …>
<cfg:Acceleration …>
<cfg:Jerk …>

These values are used for monitoring only. If as
scan device-MonitoringLevel the monitoring criterion
Position , Velocity, Acceleration or Jerk is entered,

<cfg:Configuration>

<cfg:ScanDeviceConfig>

<cfg:MonitoringLevel>
Position

</cfg:MonitoringLevel>

then exceedances automatically trigger the reaction
defined in DynamicViolationReaction (WarningOnly OR
AbortImmediately OR StopAndReport).

(3) Planning parameters for the positioning stages

<cfg:Configuration>

<cfg:StageConfig>

<cfg:StageList>

<cfg:Stage>

<cfg:CalculationDynamics>

<cfg:Velocity …>(1)

<cfg:Acceleration …>(1)

<cfg:Jerk …>(1)

Caution! syncAXIS control uses the values at
Velocity, Acceleration and Jerk to plan trajectories for
the Operation mode “StageOnly” as well as for the end
motion at Job ends. Make sure that the entered
values are correct.

(4) Monitoring limit values for the positioning stages

a. Positioning stage working fields

<cfg:Configuration>

<cfg:StageConfig>

<cfg:StageList>

<cfg:Stage>
<cfg:FieldLimits>
<cfg:XDirection …>(1)

<cfg:YDirection …>(1)

These values are used for monitoring only. If as
positioning stage-MonitoringLevel the monitoring
criterion Position is entered,

<cfg:Configuration>

<cfg:StageConfig>

<cfg:MonitoringLevel>
Position

</cfg:MonitoringLevel>

then exceedances automatically trigger the reaction
defined in DynamicViolationReaction (WarningOnly OR
AbortImmediately OR StopAndReport).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

22

innovators for industry

b. Positioning stage dynamic limits

<cfg:Configuration>

<cfg:StageConfig>

<cfg:StageList>

<cfg:Stage>
<cfg:DynamicLimits>
<cfg:Velocity>
<cfg:Acceleration>
<cfg:Jerk>

These values are used for monitoring only. If as
positioning stage-MonitoringLevel the monitoring
criterion Velocity, Acceleration or Jerk is entered
(Acceleration also subsumes Velocity, Jerk also
subsumes Acceleration),

<cfg:Configuration>

<cfg:ScanDeviceConfig>

<cfg:MonitoringLevel>
Velocity OR Acceleration OR Jerk

</cfg:MonitoringLevel>

then exceedances automatically trigger the reaction
defined in DynamicViolationReaction (WarningOnly OR
AbortImmediately OR StopAndReport).

To attain good system performance, ensure that the
limit values entered under (1) Planning parameters
for the scan devices, page 20 and
(3) Planning parameters for the positioning stages,
page 21 match the real limits of your system.

In the interests of high system security, ensure that no
limit values are entered under (2) Monitoring
limit values for the scan devices, page 20 and
(4) Monitoring limit values for the positioning stages,
page 21 that lie outside the real system limits.

Additionally ensure that syncAXIS control-based
user programs only use syncAXISConfig.xml in which
correct limit values are entered (a
syncAXIS control instance is initialized using the
syncAXISConfig.xml which is specified at
slsc_cfg_initialize_from_file) for subsequent simu-
lations and real-world marking.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

23

innovators for industry

Notes

• If you subsequently make any hardware changes
to your XL SCAN system (for example, a new
objective with a different focal length, or a
different positioning stage), then you must also
recheck the settings in all pertaining
XML configuration files. If necessary, adjust the
entered limit values according to the then valid
system limits.

• syncAXIS control utilizes values entered in
syncAXISConfig.xml for
– (1) Planning parameters for the scan devices,

page 20 and
– (3) Planning parameters for the positioning

stages, page 21
for tasks such as calculating trajectory control
values for the scan head and positioning
stage(1), but only in the sense to calculate the
most efficient trajectories possible.

Important: syncAXIS control does not perform
automatic clipping of control values and process
speeds to the limits of the system.

Some control values and process speeds may
occur that exceed the system limits, particularly
during fast jump motions executed by the
scan head and positioning stage between the
actual markings.

Before real-world marking with a laser, scan head
and positioning stage, you absolutely must there-
fore perform a simulation to check that control
values and process speeds calculated by
syncAXIS control are within the system limits, and
you must modify the Job as necessary until
compliance is attained, see Chapter 2.2.4 ”Simu-
lating and Improving Jobs”, page 24.

• syncAXIS control uses to monitor working field
and dynamics as:
– scan device dynamic limits the

DynamicLimits values, page 388
– scan device working field limits the

FieldLimits values, page 395
– scan device monitoring criterion the

MonitoringLevel value, page 397
– positioning stage dynamic limits the

FieldLimits values, page 454
– positioning stage working field limits the

DynamicLimits values, page 456
– positioning stage monitoring criterion the

MonitoringLevel values, page 452
– reaction on exceedances the

DynamicViolationReaction values, page 365

(1) …and a positioning stage compensation motion at the
end of a Job. Additionally, syncAXIS control writes
warnings to the log file when system limits are violated
(if enabled in syncAXISConfig.xml, see “About the
Logging in syncAXIS control”, page 47.

Notice!
With multi-head systems, the following applies:

– syncAXIS control does not check for
working field overlaps of the scan devices.
Make sure that each scan device can only pro-
cess its “own” workpiece.

– syncAXIS control cannot check whether scan
head working field boundaries are violated
due to slsc_cfg_set_part_displacement
transformations. A controlled deceleration as
a DynamicViolationReaction is not possible.

Caution!
Despite the entered limit values in
syncAXISConfig.xml, syncAXIS control can, under
some circumstances, calculate control values
and process speeds that exceed the system
limits.

Therefore, always initially run syncAXIS control-
based user programs in simulation mode (to
check for system limit violations) before
first-time execution of real-world marking with
the laser, scan head and positioning stage.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

24

innovators for industry

2.2.4 Simulating and Improving
Jobs

Before you run a syncAXIS control-based
user program for the first time to mark in the real
world with a laser, scan head and positioning stage,
proceed as follows:

(1) Run the user program in simulation mode to
record(1) the control values that syncAXIS control
calculates, see Chapter 2.5 ”About the
syncAXIS control Simulation Mode”, page 31.
See also the Note to the right, page 24.

(2) Analyze the recorded control values to detect
violations of system limits – for example, by
displaying them graphically(2). Here, take into
account concerns such as the following:
– Are control values issued for the positioning

stage that it cannot traverse or that would
cause it to hit the stop or that could trigger its
emergency shut-down?

– Are control values issued for the scan head that
could cause vignetting at the scan head or scan
objective?

– Are speeds issued that would force the
positioning stage to exceed its actually achiev-
able speeds, accelerations or jerks?

– You could also optionally carry out an optimiza-
tion analysis here:
• How large is the working field actually used

by the scan head?
• How long is the overall process time of your

syncAXIS control-based user program?

(3) Repeatedly improve the syncAXIS control-based
user program until you no longer find limit viola-
tions in subsequent simulation and analysis steps.

Notes

• With syncAXIS control  V1.2.4, the following
applies: the extrema of the current Job can be
queried by slsc_ctrl_get_job_characteristic. The
file output(1) does not need to be switched on.

• With syncAXIS control  V1.6.0, see also Section
”Functions for Changing Trajectory planning
Values”, page 94.

• With syncAXIS control  V1.7.0, the following
applies: In Job pre-analyses for optimization the
duration of jumps can be calculated by
slsc_cfg_get_jump_time.

(1) See DisableFileOutput.

(2) for example, in syncAXIS Viewer.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

25

innovators for industry

2.3 About the Main Structures of
a syncAXIS-DLL-Based User
Program (Exemplary)

The following describes (exemplary) the fundamental
parts of a user program which uses the syncAXIS-DLL.

(1) Program part to initialize and to configure the
syncAXIS control instance

– Calling slsc_cfg_initialize_from_file, see
Chapter 2.4 ”About Initializing
syncAXIS control-based User Programs”,
page 26.

– A check whether the syncAXIS control instance
status is “green”: calling
slsc_cfg_get_operation_status.

– Note: At this point (as described in the Installa-
tions Manual), the Operation mode could
already be changed (slsc_cfg_set_mode).
Example: For system calibration (among other
things) some Jobs must be executed (marking
the reference grids) in different
Operation modes “ScannerOnly” and “StageOnly”.

(2) Program part (code) that handles the Job defini-
tions and Job sequences
– Assembling Jobs from the suitable

Mark functions and Jump commands (each
individual Job having slsc_list_begin at the
beginning and slsc_list_end at the end, see
Chapter 2.3.1 ”Structure to Comply with when
Defining Jobs”, page 25)

– As required: insert functions
(slsc_list_write_analog_x,
slsc_list_write_digital_out,
slsc_list_write_digital_out_mask) which set
signals at output ports (corresponding to the
RTC commands (list_write_da*,
list_write_io*) on run-time of the
user program.

– Supplying all function parameters with the
desired values (for example, coordinates).

– Note: the sequence of Jobs in the source code
corresponds to the sequence of execution
(principle “first in – first out”).

(3) Program part that starts and monitors the execu-
tion of Jobs
– Checking the prerequisite

(slsc_ctrl_get_exec_state): is the RTC6 board
ready to execute
(slsc_ExecState_ReadyForExecution)

– Triggering the execution start
(slsc_ctrl_start_execution)

– Monitoring the execution status, for example
evaluate events via callbacks (for example, has
the execution terminated)

(4) Program part that detects errors and reacts as
defined by the user
– Querying whether errors have been occurred

(slsc_ctrl_get_error_count).
– Reacting to errors (subject to user knowledge)

(5) Program part that destructs the
syncAXIS control instance
– Calling slsc_cfg_delete

2.3.1 Structure to Comply with
when Defining Jobs

With Jobs, the mandatory succession of the
Job functions (slsc_list_*) is as follows:

(1) slsc_list_begin*

(2) 0…unlimited number of Job functions
slsc_list_* – except slsc_list_begin*(1)

(3) slsc_list_end

On run-time, Jobs are transferred to the
syncAXIS control instance by the user program
function by function, see Figure 11, page 41.

The syncAXIS-DLL verifies the incoming Jobs whether
the succession of the Job functions (slsc_list_*) is
consistent with the mandatory function sequence
(consistency check). In case of an error, the
return value indicates that Bit #07 is set
(JobStructureNotValid).

(1) That is, Jobs cannot be nested.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

26

innovators for industry

2.4 About Initializing
syncAXIS control-based User
Programs

A syncAXIS control instance is configured for either

• hardware mode
(USE CASE 1 in Figure 3, page 27) or

• simulation mode
(USE CASE 2 in Figure 3, page 27).

Notes on the Hardware Mode

• Every syncAXIS control instance requires 1
RTC6 board (installed in the PC, and not acquired
by another user program).

In order to create the syncAXIS control instance,
slsc_cfg_initialize_from_file is called from within
the user program (“Executable”).

In the specified syncAXISConfig.xml, the following must
be entered:

– For hardware mode:
<cfg:SimulationMode>false

</cfg:SimulationMode>
– For simulation mode:

<cfg:SimulationMode>true

</cfg:SimulationMode>

The syncAXIS control instance is created and gets a
Handle assigned by slsc_cfg_initialize_from_file
(also: slsc_cfg_initialize_copy). Via this Handle, it
can be addressed by the (most of) syncAXIS-DLL-
functions (Handle value as parameter). During the
creation the following processes take place(1):

• Scan head: is acquired. The scan head mirrors are
taken to the zero position.

• RTC6: is acquired. The RTC6 laser control is
armed. The laser control signals are already
released at the RTC6.

• Positioning stage: is acquired. The positioning
stage position remains unchanged.

• Output signals: values are applied as specified in
the syncAXISConfig.xml under
<cfg:IOConfig><cfg:DefaultOutputs>
(= LaserPinOut, AnalogOut1, AnalogOut2).

Which of the available RTC6 boards (if there are more
than one available in a PC at all) is used, is determined
by the corresponding syncAXISConfig.xml-entries under
<cfg:RTCConfig> for determining their identification by
serial number.

<cfg:BoardIdentificationMethod>BySerialNumber

</cfg:BoardIdentificationMethod>

and also

<cfg:SerialNumber>123456

</cfg:SerialNumber>.

If only a single RTC6 board is installed, the following
entry is sufficient:
<cfg:BoardIdentificationMethod>UseFirstFound

</cfg:BoardIdentificationMethod>.

Notice!
In order to operate several
syncAXIS control instances in hardware mode
on a PC simultaneously a correspondingly
configured Dongle must be used!

Otherwise, the return value indicates that
Bit #30 is set (MaxInstancesReached).

Warning!
Risk of injury due to laser radiation! Comply with
laser safety regulations!

Warning!
Risk of injury due to positioning stage
movement! No persons in the danger zone!

Caution!
Risk of property damage due to positioning
stage movement! No foreign objects in the
danger zone!

(1) See page 118 on processes during destruction.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

27

innovators for industry

For both hardware mode and simulation mode, the
following applies: the syncAXIS control instance is
started in that Operation mode which is specified in
syncAXISConfig.xml:

<cfg:InitialOperationMode>

ScannerOnly|StageOnly|ScannerAndStage
</cfg:InitialOperationMode> (1)

For reinitializing a syncAXIS control instance,
slsc_cfg_reinitialize_from_file is available, see
USE CASE 1a, in the middle of Figure 3, page 27. This
function deletes the specified
syncAXIS control instance and creates it again.
However, it does not change the Handle value of the
syncAXIS control instance.

For more information on simulation mode, see
Chapter 2.5 ”About the syncAXIS control
Simulation Mode”, page 31. In the RAM of a PC, only
1 single syncAXIS control instance in
simulation mode may exist, see also Figure 6,
page 30, bottom.

(1) After initialization, the Operation mode can be
changed by slsc_cfg_set_mode.

3
Overview on initializations: USE CASE 1, 1a 2. Not illustrated: along with the RTC6 board, the positioning
stage is also acquired (applies also to Operation mode “ScannerOnly“).

slsc_cfg_
initialize_from_file

exe
#1

syncAXISConfig.xml
#2

USE CASE 2

slsc_cfg_
reinitialize_from_file

exe
#1

syncAXISConfig.xml
#1

USE CASE 1a

slsc_cfg_
initialize_from_file

exe
#1

syncAXISConfig.xml
#1

USE CASE 1

RTC6#1 = not acquired
RTC6#2 = not acquired
RTC6#3 = not acquired

syncAXIS control Instance
- in ""Simulation mode"
- Handle value = Handle#2

Simulation=TRUE
RTC board=<entry ignored>

RTC6#1 = acquired by Handle#1
RTC6#2 = not acquired
RTC6#3 = not acquired

syncAXIS control Instance
- in "Hardware mode"
- Handle value = Handle#1

-Handle remains
-deletes
-re-creates

Simulation=FALSE
BoardIdentificationMethod=BySerialNumber

RTC6#1 = acquired by Handle#1
RTC6#2 = not acquired
RTC6#3 = not acquired

syncAXIS control Instance
- in "Hardware mode"
- Handle value = Handle#1

Simulation=FALSE
BoardIdentificationMethod=BySerialNumber

syncAXIS
control-

executable

Call Argument(s) Resulting software
object

Effect on RTC6 status
(here: 3 RTC6 installed)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

28

innovators for industry

USE CASE 3 in Figure 4, page 28 illustrates how a
single user program sequentially calls 4 different (!)
syncAXISConfig.xml.

This results in 3 separate syncAXIS control instances
in hardware mode and 1 syncAXIS control instance in
simulation mode. All 3 available RTC6 boards are
acquired in the end.

Notice!
In order to operate several
syncAXIS control instances in hardware mode
on a PC simultaneously a correspondingly
configured Dongle must be used!

Otherwise, the return value indicates that
Bit #30 is set (MaxInstancesReached).

4
Overview on initializations: USE CASE 3. Not illustrated: along with the RTC6 board, the positioning stage is
also acquired (applies also to Operation mode “ScannerOnly“.

slsc_cfg_
initialize_from_file

slsc_cfg_
initialize_from_file

slsc_cfg_
initialize_from_file

slsc_cfg_
initialize_from_file

exe
#1

syncAXISConfig.xml
#4

syncAXISConfig.xml
#3

syncAXISConfig.xml
#2

syncAXISConfig.xml
#1

USE CASE 3

RTC6#1 = acquired by Handle#3
RTC6#2 = acquired by Handle#5
RTC6#3 = acquired by Handle#6

syncAXIS control Instance
- in "Hardware mode"
- Handle value = Handle#6

Simulation=FALSE
BoardIdentificationMethod=BySerialNumber

RTC6#1 = acquired by Handle#3
RTC6#2 = acquired by Handle#5
RTC6#3 = not acquired

syncAXIS control Instance
- in "Hardware mode"
- Handle value = Handle#5

Simulation=FALSE
BoardIdentificationMethod=BySerialNumber

RTC6#1 = acquired by Handle#3
RTC6#2 = not acquired
RTC6#3 = not acquired

syncAXIS control Instance
- in "Simulation mode"
- Handle value = Handle#4

Simulation=TRUE
RTC board=<entry ignored>

RTC6#1 = acquired by Handle#3
RTC6#2 = not acquired
RTC6#3 = not acquired

syncAXIS control Instance
- in "Hardware mode"
- Handle value = Handle#3

Simulation=FALSE
BoardIdentificationMethod=BySerialNumber

syncAXIS
control-

executable

Call Argument(s) Resulting software
object

RTC6 status
(here: 3 RTC6 installed)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

29

innovators for industry

USE CASE 4 in Figure 5, page 29 illustrates how two
different user programs call 2 different (!)
syncAXISConfig.xml.

This results in 2 separate syncAXIS control instances
in hardware mode. Subsequent to this, 2 (of 3)
available RTC6 boards are acquired.

Notice!
In order to operate several
syncAXIS control instances on a PC simulta-
neously a correspondingly configured Dongle
must be used!

Otherwise, the return value indicates that
Bit #30 is set (MaxInstancesReached).

5
Overview on initializations: USE CASE 4. Not illustrated: along with the RTC6 board, the positioning stage is
also acquired (applies also to Operation mode “ScannerOnly“.

slsc_cfg_
initialize_from_file

slsc_cfg_
initialize_from_file

exe
#1

exe
#2

syncAXISConfig.xml
#1

syncAXISConfig.xml
#3

USE CASE 4

RTC6#1 = acquired by Handle#7
RTC6#2 = acquired by Handle#8
RTC6#3 = not acquired

syncAXIS control Instance
- in "Hardware mode"
- Handle value = Handle#8

Simulation=FALSE
BoardIdentificationMethod=BySerialNumber

RTC6#1 = acquired by Handle#7
RTC6#2 = not acquired
RTC6#3 = not acquired

syncAXIS control Instance
- in "Hardware mode"
- Handle value = Handle#7

Simulation=FALSE
BoardIdentificationMethod=BySerialNumber

syncAXIS
control-

executable

Call Argument(s) Resulting software
object

RTC6 status
(here: 3 RTC6 installed)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

30

innovators for industry

In Figure 6, page 30 on the top,
USE CASE WITH ERROR 1 illustrates the result, if two
different user programs call the same (!)
syncAXISConfig.xml. This results in only 1
syncAXIS control instance in hardware mode. A
second one is not created. Subsequent to this, only 1
(of 3) available RTC6 boards is acquired.

In Figure 6, page 30 on the bottom,
USE CASE WITH ERROR 2, illustrates how two
different user programs call 2 different
syncAXISConfig.xml, where both having the same entry
<cfg:SimulationMode>true</cfg:SimulationMode>.

This results in only 1 syncAXIS control instance in
simulation mode. A second one is not created.
Subsequent to this, none (of 3) available RTC6 boards
is acquired.

6
Overview on initializations: USE CASE WITH ERRORS 1 and USE CASE WITH ERRORS 2. Not illustrated: along
with the RTC6 board, the positioning stage is also acquired (applies also to Operation mode “ScannerOnly“.

slsc_cfg_
initialize_from_file

slsc_cfg_
initialize_from_file

slsc_cfg_
initialize_from_file

slsc_cfg_
initialize_from_file

exe
#2

exe
#1

exe
#2

exe
#1

syncAXISConfig.xml
#1

syncAXISConfig.xml
#2

syncAXISConfig.xml
#1

syncAXISConfig.xml
#1

NO additional
syncAXIS control Instance
=>Error code!

Simulation=TRUE
RTC board=<entry ignored>

RTC6#1 = not acquired
RTC6#2 = not acquired
RTC6#3 = not acquired

syncAXIS control Instance
- in "Simulation mode"
- Handle value = Handle#10

Simulation=TRUE
RTC board=<entry ignored>

NO additional
syncAXIS control Instance
=>Error code!

Simulation=FALSE
BoardIdentificationMethod=BySerialNumber

USE CASE WITH ERROR 2

RTC6#1 = acquired by Handle#9
RTC6#2 = not acquired
RTC6#3 = not acquired

syncAXIS control Instance
- in "Hardware mode"
- Handle value = Handle#9

Simulation=FALSE
BoardIdentificationMethod=BySerialNumber

USE CASE WITH ERROR 1

syncAXIS
control-

executable

Call Argument(s) Resulting software
object

RTC6 status
(here: 3 RTC6 installed)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

31

innovators for industry

2.5 About the syncAXIS control
Simulation Mode

syncAXIS control-based user programs can be run
with the syncAXIS control instance in
simulation mode ( V1.5.0: to query
Simulation Setting by
slsc_cfg_get_simulation_setting and to change by
slsc_cfg_set_simulation_setting).

The simulation mode:

• Requires the Dongle

• Does not require nor use any hardware
(such as an RTC6 etc.)

Execution in simulation mode includes recording the
control values calculated by syncAXIS control in a text
file (“simulation file”).

By analyzing those recorded values, users (for
example, Job designers) then can determine – even
before real-world testing with a laser and workpieces
– which parts of a Job can or must be optimized:

• A Job must receive optimization, if calculated
control values exceed system limits, Chapter 2.2.1
”Identifying System Limits”, page 19.

• A Job can benefit from optimization in terms of
process time (throughput) and execution
precision (marking result quality), see Chapter 2.6
”About Optimizing syncAXIS control-based User
Programs”, page 36.

To run syncAXIS control-based user programs in
simulation mode:

• The Dongle must be plugged in

• In the syncAXISConfig.xml (specified as an argument
in slsc_cfg_initialize_from_file),
simulation mode must already be set within the
tag <cfg:SimulationMode>:
<cfg:SimulationMode>true

</cfg:SimulationMode>
(for initialization, see also Chapter 2.4 ”About
Initializing syncAXIS control-based User
Programs”, page 26),

• In the same XML configuration file, the target
folder path for the simulation file must be
specified as <cfg:SimOutputFileDirectory> value

With those settings, the syncAXIS control-based
user program initializes the
syncAXIS control instance in simulation mode.

Once it reaches slsc_ctrl_start_execution during
execution, 1 (one) ( V1.5.0) simulation file is
generated in the specified target folder path.

With syncAXIS control  V1.3, the following file
naming convention is applied:

• Simulation_ID_<Job-ID>_TS_<13 numerical

digits>.txt(1)

(1) Example: Simulation_ID_2_TS_1546938743472.txt.
TS = timestamp. Note: V1.2 uses
_<scan device>_TS_ instead of *_TS_*.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

32

innovators for industry

A simulation file ( V1.5) contains:

(1) The configuration actually used for the Job in
xml format(1)(2)

– These parameters have been read out from
syncAXISConfig.xml during initialization

– The parameter values may have remained
unchanged since or may have been changed
(by Configuration functions (slsc_cfg_*) called
prior to Job execution, see Chapter 3.1.1 ”Con-
figuration Functions (slsc_cfg_*)”, page 76) in
the meantime

(2) A single line (starting with “<!--Simulation
output: “) with the column header names, see
Table ”Simulation files  V1.5: possible values per
data record (see 3, page 32)”, Seite 33

(3) Subsequent lines = the individual data records
– Each data record

• corresponds to an RTC6 micro vector com-
mand (10 µs)

• contains several semicolon-separated values
– The number of values in the data sets of

simulation files  V1.5 is no longer constant,
but can vary, see Table ”Simulation files  V1.5:
possible values per data record (see 3,
page 32)”, Seite 33. Thus, the lines can be of
different lengths with  V1.5

(4) Last line: “-->“

To check calculated control values for violations of
system limits, you can use a suitable software tool to

automatically read, evaluate or graphically display
data from the simulation files.

An example of such a graphic representation shows
Figure 7, page 34:

• It displays position values (X,Y) of the scan head
and positioning stage as well as “Toggle signal”
at end of micro vector. that resulted from
executing an example Job in simulation mode
and recording the values to a simulation file.

• Additionally, calculated speed, acceleration and
jerk of the positioning stage are plotted which
have been obtained through simple or multiple
numerical derivation from the position values for
the positioning stage.

• The figure shows that the Y position values of the
scan head come into a borderline range at a
single point of the example Job .

• The following applies to the ScannerAndStage
Operation mode: Initially the curve values are still
0(3), because the algorithms for
Motion decomposition only takes effect after a
few tenths of a second (“starting response time
of the filter”). Furthermore, after the final motion
command, the syncAXIS control software
initiates motions to return the system to a stable
state.

(1) Evaluation tools are able to read out the system limits
directly.

(2) Can be exported as xml file with
syncAXIS Viewer  V1.5.

(3) The absolute position does not have to be 0, the
relative position does.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

33

innovators for industry

Simulation files  V1.5: possible values per data record (see 3, page 32)

Occurrences per
data record
(see 3, page 32)

Name
(see 2, page 32)

Meaning

1 ScanDevice1X x value for scan device 1. In mm.

1 ScanDevice1Y y value for scan device 1. In mm.

0…1 ScanDevice2X x value for scan device 2. In mm.

0…1 ScanDevice2Y y value for scan device 2. In mm.

0…1 ScanDevice3X x value for scan device 3. In mm.

0…1 ScanDevice3Y y value for scan device 3. In mm.

0…1 ScanDevice4X x value for scan device 4. In mm.

0…1 ScanDevice4Y y value for scan device 4. In mm.

0…1 StageX x value for positioning stage. In mm.

0…1 StageY y value for positioning stage. In mm.

1 NumLaserOn Number of subsequent LaserOnDelays values [0…10].

0…10
(see NumLaserOn)

LaserOnDelays “Laser Active” Operation starting point in time.(a)
Relative to the micro vector start. In µs.

(a) If there are no “Laser Active” Operations or “Laser Standby” Operations, this can be recognized in  V1.5 by
NumLaserOn/NumLaserOff.

1 NumLaserOff Number of subsequent LaserOffDelays values [0…10].

0…10
(see NumLaserOff)

LaserOffDelays “Laser Standby” Operation starting point in time.(a)
Relative to the micro vector start. In µs.

1 LaserToggle “Toggle signal” at end of micro vector.

1: “Laser Active” Operation.
0: “Laser Standby” Operation.

1 ActiveChannel0 1. ActiveChannel value(b): Unit is that of the set channel(c).
If no ActiveChannel is defined: 0.

(b) See Chapter 2.9 ”About Automatically Controlling the Laser by syncAXIS control (“Automatic Laser Control“)”,
page 48.

(c) If SpotDistance is set as the ActiveChannel: Laser spot speed. In mm/s.

1 ActiveChannel1 2. ActiveChannel value(b). See 1. ActiveChannel.

1 CommandCount Consecutive number of the Job function (slsc_list_*) in the Job.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

34

innovators for industry

7
Graphic depiction of simulation data for an example Job:
* Data from the simulation file (position values and “Toggle signal” at end of micro vector.)
** Data derived from simulation file values (speed, acceleration, jerk)

blue line: X-values
red line: Y-values
— — — — : System limits
- - - - - - - - : Guide (plotted at the height of the maximum value of the curve to provide visual orientation)

OK

OK

OK

OK

OK

OK

OK

OK

OK

s

s

s

s

s

s

mm/s³

mm/s²

mm/s

mm

mm
98%

“Toggle-Signal”*

XY stage jerk**

XY stage acceleration**

XY stage speed**

Position in XY stage field*

Position in scan head image field*

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

35

innovators for industry

Notes

• Data from simulation files can be visualized using
the software tool SCANLAB syncAXIS Viewer,
which is included in the syncAXIS control-
software package, see Figure 8, page 35.

• Simulations cannot predict real-world marking
quality. Therefore, after evaluating the
simulation, you must always actually mark the
marking pattern (“real-world test”(1)) in order to
evaluate the resulting quality. As of
syncAXIS control  V1.0, hardware mode allows
you to query certain characteristics (by
slsc_ctrl_get_job_characteristic) after the Job
has been calculated (for example, max. scan head
position in the Job). Under certain circumstances,
the syncAXIS control-based user program may
have to be reworked and then executed yet again
in simulation mode (the latter in order to recheck
compliance with system limits).

8
SCANLAB syncAXIS Viewer.

(1) This requires to switch off simulation mode in the
syncAXISConfig.xml: <cfg:SimulationMode>false
</cfg:SimulationMode>.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

36

innovators for industry

2.6 About Optimizing
syncAXIS control-based User
Programs

2.6.1 Possible Optimizations

As a rule, a syncAXIS control-based user program
must not only (as described in Chapter 2.2.4 ”Simu-
lating and Improving Jobs”, page 24 and Chapter 2.5
”About the syncAXIS control Simulation Mode”,
page 31) be checked and improved for compliance
with the system limits, but also optimized with
regard to process time (throughput) and execution
accuracy (marking result quality). Such an optimi-
zation can take place in the syncAXIS control-based
user program itself, but also by changing initial-
ization values (in the used syncAXISConfig.xml) for the
syncAXIS control instance. One approach to
increasing throughput is to cut marking pattern
execution times by even cleverly arranging the
sequence of Mark functions and Jump commands in
the source code (for example, due to shorter jumps
as illustrated in figure 9).

Another way to increase throughput is by raising
process speeds.

• You can do this for all Jobs by defining a “global”
default setting for jump speed and
marking speed in the syncAXISConfig.xml – in the
tags <cfg:JumpSpeed> and <cfg:MarkSpeed> (these
apply as long as no “local” values were specified
for a Job, see below). Both speeds affect motions
of the scan head and positioning stage.
– Mark speed is often dictated by the laser pro-

cess.
– Jump speed can typically be set higher than the

marking speed. Although a higher jump speed
reduces process times (higher throughput), it
can sometimes introduce imprecision. High
jump speeds can also sometimes lead to
exceedance of system limits.

• To fine-tune process time and execution
precision, you can additionally specify “local”
jump speed and marking speed within a Job (that
is, within the syncAXIS control-based
user program) – by slsc_list_set_jump_speed
and slsc_list_set_mark_speed:
– in principle even only for one individual mark

vector or jump vector
– changes apply as of the insert position but only

to the end of the Job at most.

In some cases, you can also boost throughput by
dividing the Job (in the source code) into several
sub-Jobs

• On the one hand into sub-Jobs that contain only
those marking pattern portions that should be
generated with the (typically faster) scan head
(subsequent execution then in the
Operation mode ScannerOnly)

• On the other hand into sub-Jobs that contain only
those marking pattern portions that should be
generated with Motion decomposition by the
scan head and the positioning stage (subsequent
execution then in the Operation mode
ScannerAndStage).

9
Different arrangements of functions in the source
code can lead to identical marking results, but with
differing execution times.

(–+)(#2)(#3)(#5)(#6)(#4)(#1)

(++)(#6)(#5)(#4)(#3)(#2)(#1)

(–+)
crosses

individually

(++)
1. all

horizontals,
2. all

verticals

to#4to#5to#2

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

37

innovators for industry

The FilterBandwidth value can be specified for those
sub-Jobs that are to be marked with simultaneous
movement of the scan head and positioning stage
(that is, in Operation mode “ScannerAndStage”)(1).
In this Operation mode, this value affects
syncAXIS control calculations of the
Motion decomposition between the scan head and
positioning stage:

• Higher FilterBandwidth values lead to greater
motion participation by the positioning stage
(and thus reduced usage of the scan head
working field).
– Possible advantages of this setting:

• In some situations, the positioning stage is
more precise than the scan head.

• The positioning stage has a larger
working field than the scan head and can
thus also traverse alone longer vector
lengths.

– Possible disadvantages of this setting:
• The process speed may need to be reduced

(the positioning stage is slower than the
scan head and the positioning stage may not
be able to follow the trajectory).

• The positioning stage needs to move more
mass. Thus with high jerks, the positioning
stage might emit vibrations.

• The positioning stage consumes more power
than the scan head.

• System limits might be violated, particularly
the positioning stage dynamics.

• Lowering FilterBandwidth values lead to less
motion participation by the positioning stage
(and thus more motion participation by the
scan head and greater usage of the scan head
working field).
– Possible advantages of this setting:

• The scan head is faster than the positioning
stage. Thus higher speeds can be set.

• The scan head consumes less power than the
positioning stage.

– Possible disadvantages of this setting:
• In some situations, the scan head is less pre-

cise than the positioning stage. For example,
the scan head achieves less precise results
near its working field boundaries. Accord-
ingly, the overall accuracy is worse.

• Because the scan head working field is
smaller than that of the positioning stage, it
cannot traverse long vector lengths by itself.

• System limits might be violated, particularly
the control values for the scan head.

– For example, if users notice that the positioning
stage motions are no longer keeping up (possi-
bly indicated by a stage control warning), then
they can reduce the used positioning stage
dynamics (that is, reducing positioning stage
motions) by lowering the FilterBandwidth value.

• If you merely change only the FilterBandwidth
value, throughput will only be affected slightly
(Job time is determined primarily by mark and
jump lengths, as well as the applied speeds).

• The following additional relationship approxima-
tions apply to FilterBandwidth values:
– 1/<cfg:FilterBandwidth> value ~ utilized

scan head working field
– <cfg:FilterBandwidth> value ~ highest

positioning stage acceleration
– (<cfg:FilterBandwidth> value)² ~ highest

positioning stage jerk

(1) In the syncAXISConfig.xml, tag <cfg:FilterBandwidth>.
This value is the “global” default setting for all Jobs.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

38

innovators for industry

2.6.2 Iterative Approach

Unfortunately, we cannot increase throughput and
precision ad finitim. Generally, throughput maximi-
zation and precision maximization are actually
competing goals.

A realistic and typically iteration-based optimization
strategy is to discover optimal process parameters for
the specific process and marking pattern, in order to
maximize throughput accompanied by still-
acceptable precision (or the opposite: to maximize
precision accompanied by still-acceptable
throughput).

Support for this is provided by allowing
syncAXIS control-based user programs to run in
simulation mode, see Chapter 2.5 ”About the
syncAXIS control Simulation Mode”, page 31. Even
without (more elaborate) real-world tests, you can
thus discover which effects parameter changes have
on process times, Motion decomposition between
the scan head and positioning stage, and compliance
with system limits etc.

SCANLAB recommends the following approach:

• Create and compile a syncAXIS control-based
user program (source code) containing the
desired marking pattern.

• Ensure that the real system boundaries are
entered as limit values in the used
syncAXISConfig.xml.

• Before the first iteration step, additionally verify
the following settings in syncAXISConfig.xml:

• Process speeds should be specified conserva-
tively enough (low) to make system limit vio-
lations highly unlikely.

• Operation mode:
<cfg:InitialOperationMode>

ScannerAndStage

</cfg:InitialOperationMode>
• Simulation mode enabled

<cfg:SimulationMode>true

</cfg:SimulationMode>

• Specify output path for simulation files
<cfg:SimOutputFileDirectory>…

</cfg:SimOutputFileDirectory>

• Perform the following iteration steps:
– Change program parameters:

• for example, increase the jump speed in
syncAXISConfig.xml to increase throughput

• for example, lower the FilterBandwidth value
to decrease the positioning stage motion
participation and thus conversely increase
the scan head motion participation and uti-
lized working field

– for example, modify the source code to make
other optimizations (for example, sequence of
functions), and then recompile it, if necessary

– Run the syncAXIS control-based user program
in simulation mode: see Chapter 2.5 ”About
the syncAXIS control Simulation Mode”,
page 31

– Read data (position values and “Toggle signal”
at end of micro vector. etc.) from the generated
simulation file to derive speed, acceleration
and jerk.(1)(2)

– Analyze simulation data:
• for example, check each parameter for sys-

tem limit violations (here you should also
check the generated log file, see footnote on
page 23. If a limit value exceedance is
detected, then you absolutely must appropri-
ately readjust the affected parameter in an
additional iteration step and again perform a
simulation and analysis of results.

• Process time can be read from the generated
simulation file. Here, note that calculation
time (= time until a Job is ready for start) is
significantly longer in simulation mode than
in hardware mode.

(1) syncAXIS Viewer calculates these derived values.

(2) With syncAXIS control  V1.2.4, the following applies:
the extrema of the current Job can be queried by
slsc_ctrl_get_job_characteristic.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

39

innovators for industry

• If the simulation produced no limit value exceed-
ances, you can also optionally run the
syncAXIS control-based user program in a real-
world test to mark an actual workpiece by the
laser, scan head and positioning stage. You
should check the generated marking for achieved
quality. If needed, also perform additional
iteration steps based on this quality check (here
too, start with simulation and analysis of system
limit violations).

Example

The following table lists example parameter settings
and simulation results for four steps of such an opti-
mization process (using a simple marking pattern,
see Figure 10, page 40).

Steps 2 and 4 are actually followed by more iteration
sub-steps, because it is not initially clear which indi-
vidual parameter settings will merely approach, but
not exceed, the system limits.

• In iteration step 1, parameters are so conserva-
tively set that the simulation easily achieves
compliance with all system limits.

• In iteration step 2, jump speed and
marking speed are increased (while the
FilterBandwidth value remains unchanged). The
simulation shows that this cuts process time
considerably, but the scan head utilized its
working field (possibly borderline) nearly
complete.

• In iteration step 3, the FilterBandwidth value is
increased to reduce the scan head motion partic-
ipation (jump speed and marking speed are left
unchanged). The simulation shows that this
reduces the utilized scan head working field –
with no effect on process time. But it raised
positioning stage jerk to a possibly borderline
range.

• In iteration step 4, jump speed and
marking speed are increased even more (leading
to a reduction in process time) and the
FilterBandwidth value is lowered (although that
cuts positioning stage jerk, it also enlarges the
utilized scan head working field to the borderline
range).

Real-world tests would be required to determine
which is more advantageous: to utilize the full
scan head working field or instead to transfer
dynamics to the stage.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

40

innovators for industry

10
Marking pattern: two squares without base lines.

+60–60 +50–50 +40–40 +30–30 +20–20 +10–10 0

–30

–20

–10

+10

+20

+30

Mark vector
Jump vector

x Position [mm]

y Position [mm]

 Step 1 Step 2 Step 3 Step 4

Parameter Settings

Mark speed [mm/s] 480 770 770 840

Jump speed [mm/s] 480 770 770 840

FilterBandwidth value [Hz] 1.95 1.95 2.25 2.10

Simulation Results

Process time,
relative to process time of 600 ms from step 1

100% 71%(a) 71% 68%(a)

Utilized scan head working field,
relative to the system limit (±27 mm) x (±27 mm)

63% 98%(b) 87%(a) 99%(b)

Max. positioning stage speed,
relative to system limit 1,000 mm/s

27% 25% 29% 27%

Max. positioning stage acceleration,
relative to system limit 10,000 mm/s²

38% 44% 58% 51%

Max. positioning stage jerk,
relative to system limit 100,000 mm/s³

52% 72% 98%(b) 90%

(a) green: value change relative to preceding step is interpreted as “advantageous”.

(b) yellow: value is interpreted as “borderline”.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

41

innovators for industry

2.7 About Processes at Run Time of the User Program

11
A Job is submitted to the syncAXIS control instance function-by-function. These are converted into single Job
elements (software objects) . Each Job element passes sequentially the process chain. Buffering times add to
different processing times. Therefore, the status of a Job is a combined status out of the statuses of the single
Job elements, see also Figure 12, page 43 and Figure 13, page 44.

…

RTC6/

... Job n+1

Job n

01 slsc_list_begin
02 slsc_list_jump_abs
03 slsc_list_mark_abs
...
99 slsc_list_end

(c)(b)(a)

File
Alternatively, but only possible

in simulation mode

intelligent continuous transfer to the
list memory of the RTC6 board (bypasses
the technical capacity limit which would

allow for approx. 40 s execution time only)

via RTC6.dll API

RTC6 microvector commands
for scan head and/or
XY positioning stage

(c) Jump segments.

(b) Marking segments.

(a) Curves without velocity information.

BufferBufferBufferBuffer
Output
buffer

Motion
decomposition*

Jump duration
calculation

Velocity
planning

Geometry
planning

Trajectory planning

Processing chain

03 Software object MARK02 Software object JUMP01 Software object JOB BEGIN

Consistency check

syncAXIS control
Instance

User programm via syncAXIS.dll API

* “ScannerAndStage” only:
acc. to FilterBandwidth

** Modules are inserted here.

Only possible in
simulation mode:
optional diversion
to Module file

**

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

42

innovators for industry

2.7.1 About the Buffers of the
syncAXIS control Instances

Buffers are syncAXIS-DLL-internal temporary
memories. The software objects (as “JOB BEGIN”,
“JUMP”, “MARK etc.) pass this processing chain, see
Figure 11, page 41. Buffers are necessary because
there are processing times within the individual
processing chain links and these are differing for
different software objects. At the beginning of the
processing chain is the Input buffer.

• When loading the buffers, user must observe the
following: when the Input buffer is full, then
syncAXIS-DLL cannot execute the called
Job function (slsc_list_*). Depending on the
slsc_ListHandlingMode, this can have different
consequences.
– slsc_ListHandlingMode_ReturnAtOnce

The last called Job function (slsc_list_*)
is ignored (no exception is thrown). Due to this,
some parts may possibly be missing in the
marking result. To avoid this case, the following
measures can be taken in the user program:
• Prior to loading buffers, it can be queried

whether the Input buffer is full by
slsc_ctrl_is_list_input_buffer_full.

• The return value of a Job function
(slsc_list_*) can be used to check whether it
has been rejected (Bit #04 is set
(BUFFER_FULL)).

– slsc_ListHandlingMode_RepeatWhileBufferFull and
slsc_ListHandlingMode_RepeatWhilePredicate
syncAXIS-DLL completes the execution of
Job functions (slsc_list_*) not until sufficient
Input buffer is free again. Only then is the
user program continued.
This, users must be aware that the
user program (or corresponding thread) is pos-
sibly being blocked. If further functions (for
example, a Job start by
slsc_ctrl_start_execution) are to be executed
during blocking, this must be done by asyn-
chronous programming (or via
Callback functions) in another thread of the
user program.

• When loading the buffers while the RTC6 board is
executing a List, user must ensure that no
Buffer underrun is generated (see Glossary entry
page 11). See Section ”Avoiding Buffer
Underruns”, page 42.

Avoiding Buffer Underruns

In the case of 0x 00 00 00 02 00 00 00 02
EXEC_BUFFER_UNDERRUN you can take the following steps
to remedy the error:

(1) Use Modules, see Chapter 2.11 ”About
Working with “Modules””, page 65.

(2) Release PC resources, for example, by closing
programs that are no longer needed.

(3) Admit more precalculation time.
Of course, the fastest way to execute a Job is
to start its execution when its execution state
is ready to be executed = “job_loaded_enough”.
However, if you have problems with a
Buffer underrun, you can give
syncAXIS control more time for the calcula-
tion. In such cases it makes sense to let
syncAXIS control precalculate the Trajectory
as far as possible, that is, until the
Input buffer is full. We therefore recommend
that you do not start the Job until this buffer
has been filled sufficiently.

(4) Work with shorter Jobs
To make point (3) more effective, it is advis-
able to split long Jobs into several, shorter
Jobs if you have problems with a
Buffer underrun. This adds computing time
between Jobs.

(5) Parameter VectorResolution
Make sure that the parameter VectorResolution
is not too finely defined. A sufficiently roughly
defined VectorResolution can help to convert
very fine input data into longer vectors.

(6) Test your Jobs in advance
You can run a Job several times with the laser
disabled to ensure that there is no risk of a
Buffer underrun.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

43

innovators for industry

12
A Job is characterized by 3 different statuses of calculation, transfer and execution (which are not even exist at first). At certain
instances, “Callback events” are generated. During Calculation (“In progress”), RTC6 micro vector commands are continuously
generated out of the Job functions (slsc_list_*). These are submitted to the RTC6 board (Transfer). On Execution start, the
RTC6 board begins to execute the RTC6 micro vector commands.

n/a

n/an/a n/a

time Job is ready for execution from there
(as the RTC list memory is sufficiently filled).

The user program has started to pass
a Job to the syncAXIS control instance

(Job does not need to be complete).

6Unique Callback Event
job_finished_executing

5Repeated Callback Event
job_is_executing

(not yet existing) -> is existing -> started in progress finished

Execution Status of this Job

4Unique Callback Event
job_loaded_enough

(not yet existing) -> is existing -> started in progress finished

Transfer Status of this Job

3Unique Callback Event
job_end_planned

2Repeated Callback Event
job_progress_planned

1Unique Callback Event
job_start_planned

(not yet existing) -> is existing -> started in progress finished

Calculation Status of this Job

Legend

A user-defined “Callback function” (which is to be executed at the given “Callback event”) can be specified by a corre-
sponding “Function for registering “Callback events””, see also page 81. This is with:

1. slsc_cfg_register_callback_job_start_planned
2. slsc_cfg_register_callback_job_progress_planned
3. slsc_cfg_register_callback_job_end_planned
4. slsc_cfg_register_callback_job_loaded_enough
5. slsc_cfg_register_callback_job_is_executing
6. slsc_cfg_register_callback_job_finished_executing

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

44

innovators for industry

13
Job queue: two example scenarios (they are mutual exclusive).

Job ID6

Job ID7

Job ID5

Job ID4

Job ID3

Job ID2

Job ID1

Calculation Status of this Job: In progress.
Transfer Status of this Job: Not yet existing.
Execution Status of this Job: Not yet existing.

Calculation Status of this Job: Started.
Transfer Status of this Job: Not yet existing.
Execution Status of this Job: Not yet existing.

Calculation Status of this Job: Finished.
Transfer Status of this Job: Not yet existing.
Execution Status of this Job: Not yet existing.

Calculation Status of this Job: Finished.
Transfer Status of this Job: In progress (loaded enough = yes.)
Execution Status of this Job: Not yet existing.

Calculation Status of this Job: Finished.
Transfer Status of this Job: Finished.
Execution Status of this Job: Not yet existing.

Calculation Status of this Job: Finished.
Transfer Status of this Job: Finished.
Execution Status of this Job: In progress.

Calculation Status of this Job: Finished.
Transfer Status of this Job: Finished.
Execution Status of this Job: Finished.

Latest
Job

Job automatically gets
removed from the Job Queue!

Oldest
Job

Job Queue

Job ID2

Job ID1

Calculation Status of this Job: In progress.
Transfer Status of this Job: In progress (loaded enough = yes).
Execution Status of this Job: In progress.

Latest
Job

Oldest
Job

Job Queue

Scenario 1

Scenario 2
A Job can have simultaneously the
status “In progress” in all 3
categories (Calculation, Transfer,
Execution).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

45

innovators for industry

2.7.2 About the Point in Time when
Output Signals are actually set

Users cannot predict exactly when an output signal
(specified by “SIGNAL” functions) will actually be set
(the execution time of the individual
“MIRROR” functions are determined upon calcu-
lation). The following Figure 14, page 46 describes
the interrelationships by way of example.

“SIGNAL” function

• slsc_list_set_free_variable

• slsc_list_set_laser_pulses

• slsc_list_suppress_spotdistance_control

• slsc_list_unsuppress_spotdistance_control

• slsc_list_write_analog_x

• slsc_list_write_digital_out

• slsc_list_write_digital_out_mask

“MIRROR” function

• slsc_list_arc_abs • slsc_list_dashed_arc_abs

• slsc_list_multi_para_arc_abs • slsc_list_multi_para_dashed_arc_abs

• slsc_list_para_arc_abs • slsc_list_para_dashed_arc_abs

• slsc_list_circle_2d_abs • slsc_list_dashed_circle_2d_abs

• slsc_list_multi_para_circle_2d_abs • slsc_list_multi_para_dashed_circle_2d_abs

• slsc_list_para_circle_2d_abs • slsc_list_para_dashed_circle_2d_abs

• slsc_list_jump_abs • slsc_list_jump_abs_min_time

• slsc_list_para_jump_abs • slsc_list_para_jump_abs_min_time

• slsc_list_mark_abs • slsc_list_dashed_mark_abs

• slsc_list_multi_para_mark_abs • slsc_list_multi_para_dashed_mark_abs

• slsc_list_para_mark_abs • slsc_list_para_dashed_mark_abs

• slsc_list_wait_with_laser_off

• slsc_list_wait_with_laser_on

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

46

innovators for industry

14
The syncAXIS control instance sets output signals in relation to preceding time points.

T
i
m
e
D
e
l
a
y

T
i
m
e
D
e
l
a
y

T
i
m
e
D
e
l
a
y

T
i
m
e
D
e
l
a
y

slsc_list_end

slsc_list_begin

Time point "End" Is defined as soon as slsc_list_end is executed
(time count ends). If there are not yet carried out
"SIGNAL" functions because their TimeDelay values extend
beyond Time point "End": these TimeDelay values are clipped
to Time point "End", that is, their signals are set at
Time point "End".

Time point "3" Is defined as soon as target point of "MIRROR" function #3
is reached in the marking result. Is the 0 point for the
TimeDelay values in "SIGNAL" functions #D1…#Dn.
Signals are set, if TimeDelay
• < time point "end" - after TimeDelay has expired
• > time point "end" - at time point "end"

Time point "2" Is defined as soon as target point of "MIRROR" function #2
is reached in the marking result. Is the 0 point for the
TimeDelay values in "SIGNAL" functions #C1…#Cn.
Signals are set after TimeDelay has expired.

Time point "1" Is defined as soon as target point of "MIRROR" function #1
is reached in the marking result. Is the 0 point for the
TimeDelay values in "SIGNAL" functions #B1…#Bn.
Signals are set after TimeDelay has expired.

Time point "Zero" Is defined as soon as slsc_list_begin is executed
(time count starts). Is the 0 point for TimeDelay values
in "SIGNAL" functions #A1…#An.
Signals are set after TimeDelay has expired.

"SIGNAL" function #D1…#Dn

"MIRROR" function #3

"SIGNAL" function #C1…#Cn

"MIRROR" function #2

"SIGNAL" function #B1…#Bn

"MIRROR" function #1

"SIGNAL" function #A1…#An

CommentsTime line
(upon execution)

User program

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

47

innovators for industry

2.8 About the Logging in
syncAXIS control

For advanced problem analysis you can use the
syncAXIS control logging mechanism. It is not only
an efficient monitoring tool for users but also
provides better and easier support from SCANLAB in
case of problems.

Logging can be configured in the syncAXISConfig.xml,
see Figure 15.

The log file(1) is saved in an text file format at the
location specified by the Parameter LogfilePath.

The Loglevel set defines the kind of messages that are
logged:

• Error
– Triggers [ERROR] log file lines, if applicable
– These denote errors that actually stop the sys-

tem and put it to an error state

• Warn
– Subsumes Error
– Triggers [WARN] log file lines in addition, if

applicable
– These may denote a potential problem. How-

ever, the system is not put to an error state.
Examples: dynamic limit violations (in serious
cases, an additional error would be passed
from the ACS subsystem) and a marking speed
reduction with an positioning stage-only
motion. These messages do not necessarily
indicate faulty behavior. Therefore, it is up to
the user to react to them appropriately.

• Info
– Subsumes Warn and Error
– Triggers [INFO] log file lines in addition, if appli-

cable
– These include all messages visible to the user.

Communication as well as Job information are
logged.

Notes

• See also Chapter 5 ”Error Codes with slsc_c-
trl_get_error, Log File and Console”, page 282.

• After the first syncAXIS control instance has been
built, the logging settings from the respective
syncAXISConfig.xmls are not considered when
building further syncAXIS control instancees.
Therefore:
– Further syncAXIS control instances use the

same logging settings as the first
syncAXIS control instance

– Further syncAXIS control instance write their
log file lines into the log file of the first
syncAXIS control instance
• These log file lines also indicate from which

thread a message originates.
• In a log file line – which is written because a

syncAXIS-DLL function returns with an
error code  0, see Chapter 4 ”Standard
Return Values of the syncAXIS-DLL Func-
tions”, page 279 – the corresponding
syncAXIS control instance is also denoted.

(1) syncAXIS-DLL  V1.5.0: only 1 log file.

15
Example: Section from an syncAXISConfig.xml.

<cfg:LogConfig>
<cfg:LogfilePath>Log/Log.txt</cfg:LogfilePath>
<cfg:Loglevel>Info</cfg:Loglevel>
<cfg:EnableConsoleLogging>true</cfg:EnableConsoleLogging>
<cfg:EnableFilelogging>true</cfg:EnableFilelogging>
<cfg:MaxLogfileSize>26214400</cfg:MaxLogfileSize>
<cfg:MaxBackupFileCount>0</cfg:MaxBackupFileCount>

</cfg:LogConfig>

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

48

innovators for industry

2.9 About Automatically
Controlling the Laser by
syncAXIS control
(“Automatic Laser Control“)

A syncAXIS control instance can be set to periodically
generate and output values during Job execution by
the RTC6 (every 10 µs, more often for SpotDistance –
see column on the right).

This feature is primarily intended to get the used laser
automatically controlled by the
syncAXIS control instance. Therefore, it is referred to
as “Automatic Laser Control“ in syncAXIS control.

The possible “manner” of the output is referred to as
“Channel” in syncAXIS control (in the RTC6 Manual,
the term “signal parameter” is used).

The actual “manner” of the output is referred to as
“ActiveChannel”.

2.9.1 Activation of the “Automatic
Laser Control“

Upon initialization of the syncAXIS control instance,
the “Automatic Laser Control“ is switched on, if

• at least one Channel is defined, see Chapter 2.9.2
”Definition of the Channels and ActiveChannel”,
page 48, and

• this channel is entered as “ActiveChannel” in
syncAXISConfig.xml, see Figure 16, page 49.

2.9.2 Definition of the Channels and
ActiveChannel

The settings on Channel and ActiveChannel are done
in syncAXISConfig.xml. They are shown in Figure 16,
page 49 (on settings which can be controlled by the
user program, see Figure 17, page 52).

Up to 5 channels can be defined:

• AnalogOut1
[VoltageFraction]
Corresponds to the RTC6 signal parameter
ANALOG OUT1. The signal is outputted every
10 µs at the dedicated RTC6-Pin.

• AnalogOut2
[VoltageFraction]
Corresponds to the RTC6 signal parameter
ANALOG OUT2. The signal is outputted every
10 µs at the dedicated RTC6-Pin.

• PulseLength
[s]
Corresponds to the RTC6 signal parameter
PulseLength. Depending on the values for
LaserMode and LaserPortCfg (entered in
syncAXISConfig.xml) the signal is changed and
outputted every 10 µs at the dedicated RTC6-Pin.

• HalfPeriod
[s]
Corresponds to the RTC6 signal parameter
HalfPulsePeriod. Depending on the values for
LaserMode and LaserPortCfg (entered in
syncAXISConfig.xml) the signal is changed and
outputted every 10 µs at the dedicated RTC6-Pin.

• SpotDistance
[mm]
The signal is outputted – depending on the values
for LaserMode and LaserPortCfg (entered in
syncAXISConfig.xml) – the signal is outputted
at the same RTC6-Pin as HalfPeriod. However, the
alteration rate is much higher than the 10 µs of
HalfPeriod.
SpotDistance bases on the laser spot speed. It is
transmitted at 10 µs intervals to the RTC6. There
a conversion to suitable laser spot distances is
carried out. Factor lr, Factor lv, Factor lp do have
an effect onto the laser spot speed.

Notice!
The “Automatic Laser Control“ can only be used
reasonably, if your laser is able to react to the
signal parameter changes (see below).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

49

innovators for industry

16
syncAXISConfig.xml: Channels and ActiveChannels.

<cfg:AutomaticLaserControl>
 <cfg:ActiveChannel>
 <cfg:Channel>AnalogOut2</cfg:Channel>
 <cfg:Channel>SpotDistance</cfg:Channel>
 </cfg:ActiveChannel>
 <cfg:AnalogOut1 DefaultOutput="0.5" Format="VoltageFraction">
 <cfg:RadiusFactor Enabled="true">
 <cfg:DataPoint Unit="mm" Radius="0" Factor="0.9"/>
 <cfg:DataPoint Unit="mm" Radius="27" Factor="1"/>
 </cfg:RadiusFactor>
 <cfg:VelocityFactor Enabled="true">
 <cfg:DataPoint Unit="mm/s" Velocity="0" Factor="0.0"/>
 <cfg:DataPoint Unit="mm/s" Velocity="400" Factor="1.0"/>
 <cfg:DataPoint Unit="mm/s" Velocity="4000" Factor="2.0"/>
 </cfg:VelocityFactor>
 <cfg:Shift>0</cfg:Shift>
 </cfg:AnalogOut1>
 <cfg:AnalogOut2 DefaultOutput="0.5" Format="VoltageFraction">
 <cfg:RadiusFactor Enabled="false">
 <cfg:DataPoint Unit="mm" Radius="0" Factor="0.9"/>
 <cfg:DataPoint Unit="mm" Radius="27" Factor="1"/>
 </cfg:RadiusFactor>
 <cfg:VelocityFactor Enabled="false">
 <cfg:DataPoint Unit="mm/s" Velocity="0" Factor="0.0"/>
 <cfg:DataPoint Unit="mm/s" Velocity="400" Factor="1.0"/>
 <cfg:DataPoint Unit="mm/s" Velocity="4000" Factor="2.0"/>
 </cfg:VelocityFactor>
 <cfg:Shift>0</cfg:Shift>
 </cfg:AnalogOut2>
 <cfg:PulseLength DefaultOutput="1e-5" Unit="s">
 <cfg:RadiusFactor Enabled="true">
 <cfg:DataPoint Unit="mm" Radius="0" Factor="0.9"/>
 <cfg:DataPoint Unit="mm" Radius="27" Factor="1"/>
 </cfg:RadiusFactor>
 <cfg:VelocityFactor Enabled="true">
 <cfg:DataPoint Unit="mm/s" Velocity="0" Factor="0.0"/>
 <cfg:DataPoint Unit="mm/s" Velocity="400" Factor="1.0"/>
 <cfg:DataPoint Unit="mm/s" Velocity="4000" Factor="2.0"/>
 </cfg:VelocityFactor>
 <cfg:Shift>0</cfg:Shift>
 </cfg:PulseLength>
 <cfg:HalfPeriod DefaultOutput="1e-5" Unit="s">
 <cfg:RadiusFactor Enabled="true">
 <cfg:DataPoint Unit="mm" Radius="0" Factor="0.9"/>
 <cfg:DataPoint Unit="mm" Radius="27" Factor="1"/>
 </cfg:RadiusFactor>
 <cfg:VelocityFactor Enabled="true">
 <cfg:DataPoint Unit="mm/s" Velocity="0" Factor="0.0"/>
 <cfg:DataPoint Unit="mm/s" Velocity="400" Factor="1.0"/>
 <cfg:DataPoint Unit="mm/s" Velocity="4000" Factor="2.0"/>
 </cfg:VelocityFactor>
 <cfg:Shift>0</cfg:Shift>
 </cfg:HalfPeriod>
 <cfg:SpotDistance DefaultOutput="0.005" Unit="mm">
 <cfg:RadiusFactor Enabled="false">
 <cfg:DataPoint Unit="mm" Radius="0" Factor="0.9" />
 <cfg:DataPoint Unit="mm" Radius="26" Factor="0.9" />
 <cfg:DataPoint Unit="mm" Radius="27" Factor="1.0" />
 </cfg:RadiusFactor>
 <cfg:VelocityFactor Enabled="false">
 <cfg:DataPoint Unit="mm/s" Velocity="0.0" Factor="0.9" />
 <cfg:DataPoint Unit="mm/s" Velocity="400.0" Factor="1.0" />
 <cfg:DataPoint Unit="mm/s" Velocity="800.0" Factor="1.2" />
 </cfg:VelocityFactor>
 <cfg:Shift>1e5</cfg:Shift>
 </cfg:SpotDistance>
</cfg:AutomaticLaserControl>

Channel SpotDistance
Definitions effective with:
<cfg:Channel>SpotDistance</cfg:Channel>

Channel HalfPeriod
Definitions effective with:
<cfg:Channel>HalfPeriod</cfg:Channel>

Channel PulseLength
Definitions effective with:
<cfg:Channel>PulseLength</cfg:Channel>

Channel AnalogOut2
Definitions effective with:
<cfg:Channel>AnalogOut2</cfg:Channel>

Channel AnalogOut1
Definitions effective with:
<cfg:Channel>AnalogOut1</cfg:Channel>

“ActiveChannel” =
Channel to be used
[SpotDistance AND 1 Channel]
OR [1 Channel]

6

5
4

3
2

16

5
4

3
2

16

5
4

3
2

16

5
4

3
2

16

5
4

3
2

1

Legend
1. DefaultOutput attribute value
2. lr is to be used (true) / not (false).
3. lr characteristic data records (for 2.=true).

4. lv is to be used (true) / not (false).
5. lv characteristic data records (for 4.=true).
6. Shift (optionally, as of V1.2), see Shift.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

50

innovators for industry

For each Channel you can define:

• Its DefaultOutput value

• Whether the output value calculation for this
channel has to take the Factor lr = “radius factor”
into account or not.
Factor lr is considered for the calculation, if
enabled = true. This requires that the corre-
sponding characteristic interpolation points
(DataPoint tags) must have been entered.

• Whether the output value calculation for this
channel has to take the Factor lv =
“velocity factor” into account or not.
Factor lv is considered for the calculation, if
enabled = true. This requires that the corre-
sponding characteristic interpolation points
(DataPoint tags) must have been entered.

• When the Channel is an “ActiveChannel“:
whether the output values of this Channel are to
be brought forward or to be postponed. As of
V1.2, Shift tags are available for this purpose.

For information on calculating the output values, see
Figure 17, page 52.

However, only 1 or 2 of the (up to 5) defined channels
can actually be used. For this, it/they must have been
entered as ActiveChannel:

• 1 channel of your choice

• 1 channel of your choice together with the
Channel SpotDistance.

Notes

• If there is no ActiveChannel entry, then the
section AutomaticLaserControl is not evaluated
upon initialization of the
syncAXIS control instance.
Then the “Automatic Laser Control“ is not active
(is not used).

• Even if syncAXIS control offers similar functional-
ities as the RTC6 command
set_auto_laser_control, this RTC6 command is
not used internally (syncAXIS control has a
completely independent and self-contained
implementation).

• If the “Automatic Laser Control“ is active and
SpotDistance is an “ActiveChannel” then the
slsc_ctrl_set_laser_pulses and
slsc_list_set_laser_pulses parameters PulseLength
are effective (that is, pulse lengths of laser signal
LASER1 and LASER2 are changed). However, their
HalfPeriod parameters are not effective.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

51

innovators for industry

2.9.3 About how
ActiveChannel Values along a
Contour are Calculated

The exact value set by the syncAXIS control instance
along a contour for each channel is the result of a
calculation, see Figure 17, page 52.

The DefaultOutput value (see Figure 16, page 49) is
multiplied by up to 3 (provided these are
enabled = true) factors:

• Factor lr
“Radius factor”. Value of the characteristic for the
present excursion radius = distance from
scan head working field 0,0.

• Factor lv
“Velocity factor”. Value of the characteristic for
the present laser spot velocity in the
working field.

• Factor lp
Ramp factor. slsc_list_para_enable switches its
processing on. Otherwise, it is not applied.

– A) With slsc_list_* functions
Factor lp remains constant. It either equals the
ParaTargetDefault value or, the target value
which has been defined by the preceding
slsc_list_[multi_para/para]* function.

– B) With slsc_list_para_* functions
Factor lp is varied linearly along the vector
length/arc length. The target value is defined by
the argument ParaTarget of the current
slsc_list_para_* function. The starting value is
the last reached value
(= ParaTargetDefault value or the target value
defined by the previous
slsc_list_[multi_para/para]* function).

– C) With slsc_list_[multi_para/para]* functions
Factor lp is varied linearly segment-by-segment
along the vector length/arc length
(segments of more complicated Ramps are
defined by slsc_ParaSection). Initial value of
the 1st Ramp section is the last reached value
(= ParaTargetDefault value or the target value
defined by the previous
slsc_list_[multi_para/para]* function).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

52

innovators for industry

17
Calculation of the Output value. This is done separately for each ActiveChannel.

×

×

×

Ramp factor lp.
Controlled by the source code: lp is only used after slsc_list_para_enable.
The actually used lp value is picked from "ramps" defined with
slsc_list_[multi_para/para] functions.

Velocity factor lv.
Depends on syncAXISConfig.xml-setting: lv is applied only, if this channel has
<cfg:VelocityFactor Enabled="true">.
Then, the lv value which fits the laser spot speed is picked from the
characteristic (=cfg:DataPoint tags under cfg:VelocityFactor).

Radius factor lr.
Depends on syncAXISConfig.xml-setting: lr is applied only, if this channel has
<cfg:RadiusFactor Enabled="true">.
Then, the lr value which fits the scan head excursion radius is picked from the
characteristic (=cfg:DataPoint tags under cfg:RadiusFactor).

DefaultOutput value.
This value is set in syncAXISConfig.xml separately for each Channel.
E.g. <cfg:AnalogOut1 DefaultOutput="0.5" Format="….

Output value per 10 µs
each ActiveChannel individually

=

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

53

innovators for industry

2.9.4 About Ramps

Ramps are defined in the source code by
slsc_list_[para/multi_para]* functions, see Section
”Functions for Defining Ramps
(slsc_list_[para/multi_para]*-Functions)”, page 92.
That is, with syncAXIS control, the individual Ramp
points are defined along with position coordinates.

Ramps of different shapes can be modeled with
syncAXIS control, for example , , , .

Among other things, they are used for automatic
variation of the laser power, if the marking substrate
along the curve exhibits varying light absorption (that
is, the work piece material consists of areas that are
more sensitive to absorption and less sensitive to
absorption), see Figure 18, page 53.

Two concrete examples are described below:

• “Example – Linear (Simple) Ramp”, page 54

• “Example – Multi-part (more Complex) Ramp”,
page 57

Both examples use the same marking pattern: jump
to initial position – straight line – arc – straight line,
see Figure 19, page 53 (jumps not shown there).

18
Varying the laser power.

Laser spot. With highest energy density.
Laser spot. With lowest energy density.

Laser power 19
2D positions of the both examples in this Section.
Jumps not shown.

x [mm]

y [mm]

3.02.01.00

0.5

1.0

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

54

innovators for industry

Example – Linear (Simple) Ramp

Source Code

• See Figure 20.

Explanatory Notes on the Source Code

• Marking pattern: jump to initial position –
straight line – arc – straight line, see Figure 19,
page 53 (jumps not shown there).

• By slsc_list_para_enable
– the processing of TargetPara arguments is

enabled
– TargetParaDefault is set = 1

• By slsc_list_para_arc_abs it is defined
– the arc
– one linear Ramp

Settings for the Simulation

For simulation of the code a syncAXISConfig.xml is used
having the following settings:

• ActiveChannel = AnalogOut2

• Channel AnalogOut2
– DefaultOutput=”0.5”
– RadiusFactor Enabled=”false”

(= Factor lr shall not be used)
– VelocityFactor Enabled=”false”

(= Factor lv shall not be used)

• Deactivated splines
(slsc_SplineModes_Deactivated or by
slsc_cfg_set_trajectory_config)

• Deactivated blending curves
(slsc_BlendModes_Deactivated or by
slsc_cfg_set_trajectory_config)

Explanatory Notes on the Simulation Result

• The simulation result is shown in Figure 21,
page 56

• The Ramp starts with the arc

• Before and at the beginning of the Ramp the
output value is 0.5 (because
DefaultOutput=”0.5” and TargetParaDefault =1
means “no change”)

• The target output end value is the last reached
value × Factor lp (0.5 × 0.5 = 0.25)

• During the arc, the target output start value 0.5 is
varied linearly to the target output end value 0.25

• Other factors do not affect this variation, because
neither Factor lr nor Factor lv have been defined

• Beyond the end of the Ramp, the last value set
remains (0.25)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

55

innovators for industry

20
Code example: Linear (simple) Ramp

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// Example: linear (=simple) Ramp by a slsc_list_para_arc_abs.
// No blending curves are activated.
// Pseudo code (not complete)

size_t JobID = 0;
slsc_list_begin(Handle, &JobID);
double TargetPosition_0[2] = { 0.0, 0.0 };
double TargetPosition_1[2] = { 1.0, 1.0 };
double TargetPosition_2[2] = { 1.025, 1.025 };
double TargetPosition_3[2] = { 2.0, 1.0 };
double TargetPosition_4[2] = { 3.0, 0.0 };

double TargetParaDefault[1] = { 1.0 };
double TargetPara_1[1] = { 0.5 };

slsc_list_jump_abs(Handle, TargetPosition_0);
slsc_list_para_enable(Handle, TargetParaDefault);
slsc_list_mark_abs(Handle, TargetPosition_1);
slsc_list_para_arc_abs(Handle, TargetPosition_2, TargetPosition_3, TargetPara_1);
slsc_list_mark_abs(Handle, TargetPosition_4);
slsc_list_jump_abs(Handle, TargetPosition_0);
slsc_list_end(Handle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

56

innovators for industry

21
Diagram to Section ”Example – Linear (Simple) Ramp”, page 54.
Simulation result: temporal course (values from the Trajectory planning) of X and Y positions, as well as of the
linear (simple) Ramp. ActiveChannel = AnalogOut2, no Factor lr, no Factor lv. No splines, no blending curves.
Ramp start value: DefaultOutput × TargetParaDefault (0.5 × 1).
Ramp end value: [TargetPara_1 (= Factor lp) × last reached value] (0.5 × 0.5).

Y
X

s

mm

Output value of ActiveChannel

0.1

0.2

0.3

0.4

0.5

0

0.5

1

1.5

2

2.5

0.005

Output value

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

57

innovators for industry

Example – Multi-part (more Complex) Ramp

Source Code

• See Figure 22.

Explanatory Notes on the Source Code

• Marking pattern: jump to initial position –
straight line – arc – straight line, see Figure 19,
page 53 (jumps not shown there).

• By slsc_list_para_enable
– the processing of TargetPara arguments is

enabled
– TargetParaDefault is set = 1

• By slsc_list_multi_para_arc_abs it is defined
– the arc
– one Ramp consisting of 2 sections

ParaSection[0]…[2]

Settings for the Simulation

For simulation of the code a syncAXISConfig.xml is used
having the following settings:

• ActiveChannel = AnalogOut2

• Channel AnalogOut2
– DefaultOutput=”0.5”
– RadiusFactor Enabled=”false”

(= Factor lr shall not be used)
– VelocityFactor Enabled=”false”

(= Factor lv shall not be used)

• Deactivated splines
(slsc_SplineModes_Deactivated or by
slsc_cfg_set_trajectory_config)

• Deactivated blending curves
(slsc_BlendModes_Deactivated or by
slsc_cfg_set_trajectory_config)

Explanatory Notes on the Simulation Result

• The simulation result is shown in Figure 23,
page 59

• The Ramp starts with the arc

• Before and at the beginning of the Ramp the
output value is 0.5 (because
DefaultOutput=”0.5” and TargetParaDefault =1
means “no change”)

• 1st Ramp section
– Target output end value (a) is the

DefaultOutput value × Factor
lp@ParaSection[0] (0.5 × 0.5 = 0.25)

– This value shall be reached after 0.25 mm
marking distance

– In the process, it is linearly (declining) varied

• 2nd Ramp section
– Target output end value (b) is the

DefaultOutput value × Factor
lp@ParaSection[1] (0.5 × 0.5 = 0.25)

– This value shall be reached after 0.61(…) mm
marking distance

– the output value remains constant (because
start value and end value are 0.25)

• 3rd Ramp section
– Target output end value (c) is the

DefaultOutput value × Factor
lp@ParaSection[2] (0.5 × 1.0 = 0.5)

– This value shall be reached after 0.25 mm
marking distance

– In the process, it is linearly (increasing) varied

• Other factors do not affect this variation, because
neither Factor lr nor Factor lv have been defined

• Beyond the end of the Ramp, the last value set
remains (0.5)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

58

innovators for industry

22
Code example: Multi-part (more complex) Ramp

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// Example MultiPara by slsc_list_multi_para_arc_abs
// No blending curves are activated.
// Pseudo code (not complete)

size_t JobID = 0;
slsc_list_begin(Handle, &JobID);
double TargetPosition_0[2] = { 0.0, 0.0 };
double TargetPosition_1[2] = { 1.0, 1.0 };
double TargetPosition_2[2] = { 1.025, 1.025 };
double TargetPosition_3[2] = { 2.0, 1.0 };
double TargetPosition_4[2] = { 3.0, 0.0 };

slsc_list_jump_abs(Handle, TargetPosition_0);
slsc_list_mark_abs(Handle, TargetPosition_1);
double TargetParaDefault[1] = { 1.0 };
slsc_list_para_enable(Handle, TargetParaDefault);

// Here is created: array of type slsc_ParaSection with dimension 3.
slsc_ParaSection ParaSection[3];
ParaSection[0] = slsc_ParaSection{ 0.25, 0.5 };
ParaSection[1] = slsc_ParaSection{ 0.6186678697087737, 0.5 };
ParaSection[2] = slsc_ParaSection{ 0.25, 1.0 };

// Here is created: array of type slsc_MultiParaTarget with dimension 1 (due ActiveChannel == 1).
slsc_MultiParaTarget MultiTargetPara[1];
MultiTargetPara[0].Targets = ParaSection;
MultiTargetPara[0].NumParaTargets = 3;
slsc_list_multi_para_arc_abs(Handle, TargetPosition_2, TargetPosition_3, MultiTargetPara);

slsc_list_mark_abs(Handle, TargetPosition_4);
slsc_list_jump_abs(Handle, TargetPosition_0);
slsc_list_end(Handle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

59

innovators for industry

23
Diagram to Section ”Example – Multi-part (more Complex) Ramp”, page 57.
Simulation result: temporal course (values from the Trajectory planning) of X and Y positions, as well as of the
multi-part (more complex) Ramp. ActiveChannel = AnalogOut2, no Factor lr, no Factor lv. No splines, no
blending curves. For further details see text.

s

Y
X

n=2n=1n=0
ParaSection[n]

(DefaultOutput ×
TargetParaDefault)

DefaultOutputmm

(c)

(b)(a)

0.1

0.2

0.3

0.4

0.5

0

0.5

1

1.5

2

2.5

0.005

Output value

Output value of ActiveChannel

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

60

innovators for industry

2.9.5 About the
“Contour-dependent speed
calculation“

“Contour-dependent speed calculation“ is a func-
tionality of the “Automatic Laser Control“.

The “Contour-dependent speed calculation“ requires
that the “Automatic Laser Control“ is configured in
syncAXISConfig.xml (at least 1 channel is defined and
entered as “ActiveChannel“) and switched on (initial-
izing the syncAXIS control instance with this
syncAXISConfig.xml), see Chapter 2.9.1 ”Activation of
the “Automatic Laser Control“”, page 48.

After initialization of the syncAXIS control instance
by slsc_cfg_initialize_from_file the
“Contour-dependent speed calculation“ is not
switched on at first.

The main use cast for “Contour-dependent speed
calculation“ is that users can influence on which
calculation basis the energy input along curves is to
take place (and thus ultimately the marking result).

Example: there are (although laser spots are equi-
distant and there is a constant marking speed)
burn-ins with curves, and some of these burn-ins
extend into areas that should actually be used as a
workpiece, see Figure 24, page 61.

To achieve evenness of the signal output (at all
“ActiveChannel”, for example, equidistance of the
laser spot distances with SpotDistance), the
syncAXIS control instance calculates – without
“Contour-dependent speed calculation“ – their
output in relation to the speed along the middle of
the contour line. This case is illustrated in Figure 24,
page 61.

Users can change this calculation basis (for this
speed) by the following functions:

• slsc_cfg_set_contour_dependent_speed_control
_2d

• slsc_list_set_contour_dependent_speed_control
_2d

By selecting suitable parameters it can be set whether
the speed is calculated related to

• a certain distance to the middle of the contour
line (SpotRadius), and

• furthermore, whether this distance shall be
– to the right of the contour (Direction = +1)

see Figure 25, page 62
– to the left of the contour (Direction = –1)

see Figure 26, page 63.

Notes

• “Contour-dependent speed calculation“ is
switched off by:
– slsc_cfg_set_contour_dependent_speed_cont

rol_2d with Direction=0 or SpotRadius=0
– slsc_list_set_contour_dependent_speed_cont

rol_2d with Direction=0 or SpotRadius=0

• For the ActiveChannel SpotDistance (only) it is
possible with these two functions to refer the
spot distance calculation to the speed at the inner
radius or outer radius (instead of the contour line
center) and then (during the Job execution) to
actually output the laser spots more often than
only in a 10 µs clock cycle.

• For all ActiveChannels (also SpotDistance) the
following applies:
– if the “Contour-dependent speed calculation“

is switched on:
Factor lv is related to the above described speed

– if the “Contour-dependent speed calculation“
is switched off:
Factor lv is related to the laser spot speed in the
working field

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

61

innovators for industry

24
The “Automatic Laser Control“ is on, because SpotDistance is set as “ActiveChannel” (see Figure 16, page 49) in
syncAXISConfig.xml. SpotDistance ensures that the laser spots are equidistant: in this example, however, the
“Contour-dependent speed calculation“ is not switched on (default setting, as well as by
slsc_cfg_set_contour_dependent_speed_control_2d or
slsc_list_set_contour_dependent_speed_control_2d with Direction=0 or SpotRadius=0). Therefore,
syncAXIS control calculates the evenness of the laser spot distances in relation to the middle of the contour
line. The contour line must (applies to syncAXIS control  V0.11) consist of several
slsc_list_[multi_para/para]* functions. The velocity vector derives from the Trajectory planning and results
from the defined marking pattern.
Note: In the case shown here, burn-ins in the area marked with “ “ – despite equidistant laser spots and
constant marking speed there – potentially may be observed at the designated area (which is why the
“contour-dependent speed calculation“ feature has been introduced for correction).

y=Velocity vector

Workpiece (or waste).

Waste (or workpiece).

Spot distance: d
(set with
ActiveChannel
= SpotDistance)

Constant distance
d along ("on") the
curve mid-line.

Constant distance
d along the
curve mid-line.Constant distance

d along the
curve mid-line.

Contour line
(see below)

Automatic Laser Control = ON:
• ActiveChannel = SpotDistance
Contour-dependent speed calculation = OFF:
• Direction=0
 (of slsc_list/cfg_set_contour_dependent_speed_control)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

62

innovators for industry

25
The “Automatic Laser Control“ is on, because SpotDistance is set as “ActiveChannel” (see Figure 16, page 49) in
syncAXISConfig.xml. SpotDistance ensures that the laser spots are equidistant: in this example, the
“Contour-dependent speed calculation“ is switched on, because Direction=+1 is specified with
slsc_cfg_set_contour_dependent_speed_control_2d or
slsc_list_set_contour_dependent_speed_control_2d. Therefore, syncAXIS control calculates the evenness
of the laser spot distances in relation to the “right” of the contour line.
The contour line must (applies to syncAXIS control  V0.11) consist of several
slsc_list_[multi_para/para]* functions. The velocity vector derives from the Trajectory planning and results
from the defined marking pattern.

=>x points to right side

y=Velocity vector

Direction=+1
=>z points against the

beam direction (to viewer)

Spot distance: d
(set with
ActiveChannel
= SpotDistance)

With direction=+1:
constant distance d
to the right of curve
parallel to mid-line.

With direction=+1:
constant distance d
to the right of curve.With direction=+1:

constant distance d
to the right of curve.

Half width: r
(SpotRadius)

Contour line
(see below)

Right-handed
coordinate system

Automatic Laser Control = ON:
• ActiveChannel = SpotDistance
Contour-dependent speed calculation = ON:
• Direction=+1
 (of slsc_list/cfg_set_contour_dependent_speed_control)

Workpiece (or waste).

Waste (or workpiece).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

63

innovators for industry

26
The “Automatic Laser Control“ is on, because SpotDistance is set as “ActiveChannel” (see Figure 16, page 49) in
syncAXISConfig.xml. SpotDistance ensures that the laser spots are equidistant: in this example, the
“Contour-dependent speed calculation“ is switched on, because Direction=–1 is specified with
slsc_cfg_set_contour_dependent_speed_control_2d or
slsc_list_set_contour_dependent_speed_control_2d. Therefore, syncAXIS control calculates the evenness
of the laser spot distances in relation to the “left” of the contour line.
The contour line must (applies to syncAXIS control  V0.11) consist of several
slsc_list_[multi_para/para]* functions. The velocity vector derives from the Trajectory planning and results
from the defined marking pattern.

x points to left side<=

y=Velocity vector

Direction=-1
points along the
beam direction (to viewer)=z

With direction=-1.
Distance along the
curve parallel to mid-line
is kept constant at d.

With direction=-1.
Distance along
the curve mid-line
is kept constant at d.

With direction=-1.
Distance along
the curve mid-line
is kept constant at d.

Spot distance: d
(set with
ActiveChannel
= SpotDistance)

Half width: r
(SpotRadius)

Contour line
(see below)

Right-handed
coordinate system

Automatic Laser Control = ON:
• ActiveChannel = SpotDistance
Contour-dependent speed calculation = ON:
• Direction=-1
 (of slsc_list/cfg_set_contour_dependent_speed_control)

Workpiece (or waste).

Waste (or workpiece).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

64

innovators for industry

2.10 About Heuristic and
Characteristics for Speed
Reductions

Heuristic

• Definition incl. prerequisite, Segment types (incl.
how to restrict to Jump Segments only), see
Glossary entry Heuristic

Speed Reduction Characteristics

• Use cases see DynamicReductionFunction (page 473)

• Non-use case see DynamicReductionFunction
(page 473)

• Definition location: child tags of
DynamicReductionFunctions
– One characteristic = one

DynamicReductionFunction tag. Its interpolation
points = DataPoint child tags (x values spatial
length, y values speed)

– Example see XML section example, page 473
– Allowed characteristics number see

DynamicReductionFunction
– Default-characteristic see

DynamicReductionFunction
– To change the characteristic

(slsc_cfg_select_heuristic) see
DynamicReductionFunction

– No characteristic – no Heuristic possible
(DynamicReductionFunction is not a
mandatory tag)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

65

innovators for industry

2.11 About Working with
“Modules”

As illustrated in Figure 11, page 41, the user defines
a Job by a series of Job functions (slsc_list_*) as input
for the Trajectory planning of the syncAXIS-DLL. Its
result is loaded into the RTC6 list memory(1) in the
form of RTC6 micro vector commands. After Job
execution has been triggered, Trajectory planning
and Job execution typically run in parallel.

With a very computationally intensive Trajectory (for
example, many very short vectors are defined in the
code at high marking speeds(2)), the RTC6 list
memory may be processed faster than new
micro vectors can be calculated.

As soon as the RTC6 list memory has been completely
processed Job execution is aborted due to a
Buffer underrun
(see also Chapter 2.7.1 ”About the Buffers of the
syncAXIS control Instances”, page 42) and XL SCAN
is put into an error state.

This problem can be avoided by
slsc_list_begin_module. In simulation mode, this
function can be used to get a Job calculated
“in advance”. The result (“Module“) is recorded as a
“Module file“, see Section ”Module file”, page 66.

At a later time, this Module file can be reused in other
Jobs (“replaying the Module” omitting the compu-
tation-intensive Trajectory planning) by either

• slsc_list_playback_module (parameter values
on Ramps are not applied)

• slsc_list_para_playback_module
(parameter values on Ramps are applied, if there
is a slsc_list_para_enable in advance)

After Module file import position data is available to
the user program. These are inserted before the
processing step “Motion decomposition”, see
Figure 11, page 41.

From this step on, the further processing is fast. This
is why a Buffer underrun no longer occurs, even if
input data had been in high definition originally.

Notes

• Motion decomposition (FilterBandwidth) occurs
not until the Module is replayed
(slsc_list_playback_module).

• See also Section ”Behavior on Module replay”,
page 66.

• The dynamics of the set (target) Trajectory cannot
be changed when replaying the Module.

• Nevertheless, the contained Module can be
positioned and rotated anywhere in the space by
slsc_list_set_rot_and_offset_2d.

• From the userModule (recorded Job) and a
programming using the corresponding
Job functions (slsc_list_*) behave largely the
same. For special aspects in particular at the
beginning and end of the Module, see
slsc_list_begin_module and
slsc_list_playback_module.

• Code examples:
– General procedure with Modules,

see Figure 27, page 67
– To record a Module,

see Figure 28, page 68
– To replay a Module,

see Figure 29, page 69
– See also Chapter 10 ”Appendix C:

Application Note – Marking Texts by Using
Modules”, page 344

– See also Chapter 11 ”Appendix D:
Application Note – Avoiding Buffer Underruns
by Using Modules”, page 347

(1) No general statement can be made about the
calculation time of a single RTC6 micro vector. This
depends strongly on the set parameter values and the
complexity of the Trajectory.

(2) For example, by slsc_list_mark_abs.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

66

innovators for industry

Module file

• Properties
– File extension *.slm
– Binary file
– Cannot be opened in syncAXIS Viewer V1.5
– Has been recorded by

slsc_list_begin_module
– Is replayed by

slsc_list_playback_module
• However, the following applies:

• Content
– A internal version number (compatibility infor-

mation)
– Position data per 10 µs clock cycles (result of

the Trajectory planning) before
Motion decomposition(1), see Figure 11,
page 41, along with laser switching time points
(these, however, without LaserPreTriggerTime
and LaserSwitchOffsetTime correction(2))
• At replay time, therefore, the dynamics of the

recorded Trajectory cannot be changed
– Parameter values on Ramps
– Relative triggering times and parameter values

(as specified by the user) of
“SIGNAL” functions(3)

– Various meta data, for example, on maximum
speeds

• Behavior on Module replay
The behavior of the configuration
parameter values when replaying the Module is
shown in Chapter 13.1
”xml-Structure Overview”, page 358, that is,
if/how parameter values of either

– the Module or
– the replaying syncAXIS control instance

are applied:
• Container

No behavior as it is a container tag
• STANDARD

Standard behavior: The parameter value of
the replaying syncAXIS control instance is
applied. If you want to vary the
parameter value, then you do not need to
record a new Module each time for this.
If supplementary information is available:
STANDARD***

• NON-ST’D

Non-Standard behavior: The parameter value
of the replaying syncAXIS control instance is
not applied. If you want to vary the
parameter value, then you need to record a
new Module each time for this.
If supplementary information is available:
NON-ST’D***

The
Operation mode
in which the
Module has been
recorded

Allowed
Operation mode for
replaying the Module

StageOnly StageOnly

ScannerOnly ScannerOnly

ScannerAndStage

ScannerAndStage ScannerOnly

ScannerAndStage

(1) This is the set (target) Trajectory relative to the
workpiece.

(2) The laser switching time points are corrected by the
values for LaserPreTriggerTime and
LaserSwitchOffsetTime valid at replay time.

(3) See Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

67

innovators for industry

27
Simplified code structure for working with Modules – General procedure (slsc_cfg_initialize_copy, recording
and replaying a Module, executing a Job).

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

// To use slsc_cfg_initialize_copy, to record and play back a Module.
// To initialize source-syncAXIS control instance in hardware mode.
size_t HardwareHandle = 0;
const char* XmlConfigFileName = "HardwareMode_syncAXISConfig.xml";
slsc_cfg_initialize_from_file(&HardwareHandle, XmlConfigFileName);

// To change configuration of the source-syncAXIS control instance (is in hardware mode).
double NewMarkSpeed = 500.0;
slsc_cfg_set_mark_speed(HardwareHandle, NewMarkSpeed);

// To initialize target-syncAXIS control instance in simulation mode with current configuration of
// source-syncAXIS control instance (hardware mode).
size_t SimulationHandle = 0;
slsc_cfg_initialize_copy(&SimulationHandle, HardwareHandle);

// To prepare Callback function to communicate end of Module recording (= end of Job planning)
// in the target-syncAXIS control instance (simulation mode).
slsc_ExecTimeCallback setModuleRecordingFinished = static_cast<slsc_ExecTimeCallback>([](size_t JobID, uint64_t,
Progress, double ExecTime, void* Context)

{
bool* PtrToModuleRecordingFinished = static_cast<bool*>(Context);
*PtrToModuleRecordingFinished = true;

});
bool ModuleRecordingFinished = false;
slsc_cfg_register_callback_job_end_planned(SimulationHandle, setModuleRecordingFinished,
&ModuleRecordingFinished);

// To record a Module file in the target-syncAXIS control instance (is in simulation mode).
size_t JobID_Sim = 0;
const char* ModuleFileName = "NewModule.slm";
double[2] StartPosition = {0.0, 0.0};
slsc_list_begin_module(SimulationHandle, &JobID_Sim, StartPosition, ModuleFileName);
double Target[2] = {1.0, 2.0};
slsc_list_mark_abs(SimulationHandle, Target);
slsc_list_end(SimulationHandle);

// Wait until recording has finished. Then delete target-syncAXIS control instance (is in simulation mode).
while(!ModuleRecordingFinished)

{
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
slsc_cfg_delete(SimulationHandle);

// To replay the recorded Module file in the source-syncAXIS control instance (is in hardware mode).
size_t JobID_HW = 0;
slsc_list_begin(HardwareHandle, &JobID_HW);
slsc_list_playback_module(HardwareHandle, ModuleFileName);
slsc_list_end();

// To execute the Job. Then delete source-syncAXIS control instance (is in hardware mode).
slsc_ExecState State;
slsc_ctrl_get_exec_state(HardwareHandle, &State);
while (State != slsc_ExecState_ReadyForExecution)

{
slsc_ctrl_get_exec_state(HardwareHandle, &State);
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
slsc_ctrl_start_execution(HardwareHandle);
while ((State != slsc_ExecState_Idle) && (State != slsc_ExecState_NotInitOrError))

{
slsc_ctrl_get_exec_state(HardwareHandle, &State);
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
slsc_cfg_delete(HardwareHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

68

innovators for industry

28
Simplified code structure for recording a Module.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

// To record a Module.

// To initialize the source-syncAXIS control instance in simulation mode.
size_t SLHandle = 0;
const char* XmlConfigFileName = "InSimulationMode_syncAXISConfig.xml";
slsc_cfg_initialize_from_file(&SLHandle, XmlConfigFileName);

// To prepare Callback function to communicate end of Module recording (= end of Job planning).
slsc_ExecTimeCallback setModuleRecordingFinished = static_cast<slsc_ExecTimeCallback>([](size_t JobID, uint64_t
Progress, double ExecTime, void* Context)

{
bool* PtrToModuleRecordingFinished = static_cast<bool*>(Context);
*PtrToModuleRecordingFinished = true;

});
bool ModuleRecordingFinished = false;
slsc_cfg_register_callback_job_end_planned(SLHandle, setModuleRecordingFinished, &ModuleRecordingFinished);

// To start Module recording at start position (0,0).
size_t JobID = 0;
double StartPosition[2] = {0.0, 0.0};
const char* ModuleFileName = "NewModule.slm";
slsc_list_begin_module(SLHandle, &JobID, StartPosition, ModuleFileName);

// To define the to-be-recorded Job by a series of list commands.
// Note that this example just illustrates the mechanics of Module recording.
// It generally does not make much sense to record a Module of such a small Job.
double Target1[2] = {0.0, 5.0};
double Target2[2] = {5.0, 5.0};
uint16_t DigOutVal = 2;
double DigOutDelay = 0.0;
slsc_list_jump_abs(SLHandle, Target1);
slsc_list_write_digital_out(SLHandle, DigOutVal, DigOutDelay);
slsc_list_mark_abs(SLHandle, Target2);
slsc_list_end(SLHandle);

// To wait for Module recording to finish. Then delete syncAXIS control instance.
while(!ModuleRecordingFinished)

{
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

69

innovators for industry

29
Simplified code structure for replaying a Module.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

// To play back a Module.

// To initialize syncAXIS control instance.
size_t SLHandle = 0;
const char* XmlConfigFileName = "syncAXISConfig.xml";
slsc_cfg_initialize_from_file(&SLHandle, XmlConfigFileName);

// To define the Job in which you want to include a recorded Module. Imagine that the Module
// represents some marking pattern, that you now want to repeat a number of times on a regular grid.
// Each grid element is also to be rotated by some amount with respect to the original pattern.
size_t JobID = 0;
slsc_list_begin(SLHandle, &JobID);
int Nx = 15;
double DeltaX = 1.0;
int Ny = 10;
double DeltaY = 2.0;
const double Pi = 3.14159265359;
double DeltaAngle = 5.0 * Pi/180;
const char* ModuleFileName = "MyMarkingPattern.slm";
for (int i = 0; i < Nx; ++i)

{
for (int j = 0; j < Ny; ++j)

{
double Angle = (i+j) * DeltaAngle;
double Offset[2] = {i * DeltaX, j * DeltaY};
slsc_list_set_rot_and_offset_2d(SLHandle, Angle, Offset);
slsc_list_playback_module(SLHandle, ModuleFileName);

}
}

slsc_list_end(SLHandle);

// To execute the Job. Then delete syncAXIS control instance.
slsc_ExecState State;
slsc_ctrl_get_exec_state(SLHandle, &State);
while (State != slsc_ExecState_ReadyForExecution)

{
slsc_ctrl_get_exec_state(SLHandle, &State);
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
slsc_ctrl_start_execution(SLHandle);
while ((State != slsc_ExecState_Idle) && (State != slsc_ExecState_NotInitOrError))

{
slsc_ctrl_get_exec_state(SLHandle, &State);
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

70

innovators for industry

2.12 About the Mode “Manual
Positioning“

• To automatically put a syncAXIS control instance
to Mode “Manual Positioning“(1), call:
– slsc_ctrl_unfollow

• To terminate Mode “Manual Positioning“, call:
– slsc_ctrl_follow

• The Mode “Manual Positioning“ allows to adjust
the positions of the scan device and positioning
stage from the syncAXIS control instance as
desired. As the syncAXIS control instance does
not need to be destroyed (then positioned by an
external software, for example, ACS software)
and then recreated, there is a time saving.

• In Mode “Manual Positioning“:
– The Job queue is not deleted
– It is still possible to call Job functions

(slsc_list_*)
– Trajectory calculations are not interrupted
– The RTC6 remains acquired
– The positioning stage can not only be con-

trolled externally, but also from the
syncAXIS control instance(2) (by
slsc_ctrl_move_stage_abs; the scan device
also by slsc_ctrl_move_scanner_abs)

• However, in Mode “Manual Positioning“ no
Job starts can be triggered by
slsc_ctrl_start_execution

• A syncAXIS-DLL-function can be
– not
– only
– also
permitted in Mode “Manual Positioning“, see
Chapter 2.12.1 ”Allowed/Not Allowed
syncAXIS control Functions”, page 71.

• Mode “Manual Positioning“ is not another
Operation mode (see enum
slsc_OperationMode). Therefore, it cannot be
set in the syncAXISConfig.xml as the initial operating
mode.

Use Case: Examination of Laser Beam Quality
During Active Operation

• In Mode “Manual Positioning“, by
slsc_ctrl_move_scanner_abs and
slsc_ctrl_move_stage_abs (which are similar to
the RTC6 command goto_xy), the
galvanometer scanners in the scan device and the
positioning stage are independently moved from
each other so that the laser beam focus can hit a
sensor. Then, the laser can be directly switched
on/off by slsc_ctrl_laser_signal_on and
slsc_ctrl_laser_signal_off.

Use Case: Temporarily Releasing the
Positioning Stage and Changing the Target
Positioning Stage

• See Chapter 2.12.2 ”Example – Temporarily
Releasing the Positioning Stage and Changing
the Target Positioning Stage”, page 74.

(1) As of syncAXIS control  V1.1.0.

(2) It is therefore not necessary to use the ACS software to
move the positioning stage to a desired position.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

71

innovators for industry

2.12.1 Allowed/Not Allowed
syncAXIS control Functions

• If a function is not allowed in Mode “Manual
Positioning“, then the return value indicates that
Bit #11 is set
(NotAllowedInCurrentMode).

Function Allowed in Mode “Manual Positioning“?

slsc_cfg_acquire_stage (deprecated) No.

slsc_cfg_delete Yes.

slsc_cfg_delete_trajectory_config Yes.

slsc_cfg_get_calculation_dynamics_jump_scan_device Yes.

slsc_cfg_get_calculation_dynamics_mark_scan_device Yes.

slsc_cfg_get_calculation_dynamics_stage Yes.

slsc_cfg_get_dynamic_limits_scan_device Yes.

slsc_cfg_get_dynamic_limits_stage Yes.

slsc_cfg_get_dynamic_violation_reaction Yes.

slsc_cfg_get_field_limits_scan_device Yes.

slsc_cfg_get_field_limits_stage Yes.

slsc_cfg_get_jump_time Yes.

slsc_cfg_get_mode Yes.

slsc_cfg_get_operation_status Yes.

slsc_cfg_get_scan_device_dynamic_monitoring_level Yes.

slsc_cfg_get_simulation_setting Yes.

slsc_cfg_get_stage_dynamic_monitoring_level Yes.

slsc_cfg_get_sync_axis_version Yes.

slsc_cfg_get_trajectory_config Yes.

slsc_cfg_initialize_copy No.

slsc_cfg_initialize_from_file No.

slsc_cfg_register_callback_job_end_planned Yes.

slsc_cfg_register_callback_job_finished_executing Yes.

slsc_cfg_register_callback_job_is_executing Yes.

slsc_cfg_register_callback_job_loaded_enough Yes.

slsc_cfg_register_callback_job_progress_planned Yes.

slsc_cfg_register_callback_job_start_planned Yes.

slsc_cfg_reinitialize Yes.

slsc_cfg_reinitialize_from_file Yes.

slsc_cfg_release_stage (deprecated) No.

slsc_cfg_select_heuristic Yes.

slsc_cfg_select_stage Yes.

slsc_cfg_set_bandwidth Yes.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

72

innovators for industry

Function
(cont’d)

Allowed in Mode “Manual Positioning“?
(cont’d)

slsc_cfg_set_calculation_dynamics_jump_scan_device Yes.

slsc_cfg_set_calculation_dynamics_mark_scan_device Yes.

slsc_cfg_set_calculation_dynamics_stage Yes.

slsc_cfg_set_contour_dependent_speed_control_2d Yes.

slsc_cfg_set_dynamic_limits_scan_device Yes.

slsc_cfg_set_dynamic_limits_stage Yes.

slsc_cfg_set_dynamic_violation_reaction Yes.

slsc_cfg_set_field_limits_scan_device Yes.

slsc_cfg_set_field_limits_stage Yes.

slsc_cfg_set_jump_speed Yes.

slsc_cfg_set_list_handling_mode Yes.

slsc_cfg_set_list_handling_mode_with_context Yes.

slsc_cfg_set_mark_speed Yes.

slsc_cfg_set_matrix_and_offset Yes.

slsc_cfg_set_mode No.

slsc_cfg_set_part_displacement Yes.

slsc_cfg_set_rot_and_offset_2d Yes.

slsc_cfg_set_scan_device_dynamic_monitoring_level Yes.

slsc_cfg_set_simulation_setting No.

slsc_cfg_set_stage_dynamic_monitoring_level Yes.

slsc_cfg_set_trajectory_config Yes.

slsc_ctrl_disable_laser Yes.

slsc_ctrl_enable_laser Yes.

slsc_ctrl_follow Only allowed in Mode “Manual Positioning“.

slsc_ctrl_get_error Yes.

slsc_ctrl_get_error_count Yes.

slsc_ctrl_get_exec_state Yes.

slsc_ctrl_get_free_variable Yes.

slsc_ctrl_get_job_characteristic Yes.

slsc_ctrl_get_scan_device_position Yes.

slsc_ctrl_get_stage_position Yes.

slsc_ctrl_get_syncaxis_simulation_filename Yes.

slsc_ctrl_get_value Yes.

slsc_ctrl_is_list_input_buffer_full Yes.

slsc_ctrl_laser_signal_off Only allowed in Mode “Manual Positioning“.

slsc_ctrl_laser_signal_on Only allowed in Mode “Manual Positioning“.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

73

innovators for industry

Function
(cont’d)

Allowed in Mode “Manual Positioning“?
(cont’d)

slsc_ctrl_move_scanner_abs Only allowed in Mode “Manual Positioning“.

slsc_ctrl_move_stage_abs Only allowed in Mode “Manual Positioning“.

slsc_ctrl_refresh_correction_file Yes.

slsc_ctrl_select_correction_file Yes.

slsc_ctrl_set_free_variable Yes.

slsc_ctrl_set_laser_pulses Yes.

slsc_ctrl_start_execution No.

slsc_ctrl_stop Yes.

slsc_ctrl_stop_controlled No.

slsc_ctrl_unfollow No.

slsc_ctrl_write_analog_x Only allowed in Mode “Manual Positioning“.

slsc_ctrl_write_digital_out Only allowed in Mode “Manual Positioning“.

slsc_ctrl_write_digital_out_mask Only allowed in Mode “Manual Positioning“.

slsc_list_* (see page 109) Yes.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

74

innovators for industry

2.12.2 Example – Temporarily
Releasing the
Positioning Stage and
Changing the Target
Positioning Stage

Operators of 2 positioning stage systems can
combine Mode “Manual Positioning“
(slsc_ctrl_unfollow/slsc_ctrl_follow) and
slsc_cfg_select_stage.

As an example, the following table shows the
processes in detail.

Notes

• For the use case “Temporarily releasing the
positioning stage and changing the
target-positioning stage (by
slsc_cfg_select_stage)“ the following
syncAXIS-DLL functions are obsolete and are no
longer to be used:
– slsc_cfg_release_stage (deprecated)
– slsc_cfg_acquire_stage (deprecated)

Notice!
To be able to use slsc_cfg_select_stage a
Dongle must be used which allows the use of
several positioning stages (standard Dongle not
sufficient)!

Otherwise, the return value indicates that
Bit #31 is set (InvalidOrMissingDongle).

Time

*.exe(a)
running?

*.exe
calls…

syncAXIS
control in

stance
existing?

syncAXIS
control in
stance in

Mode
“Manual

Posi-
tioning“?

syncAXIS
control in

stance
with

queue?

syncAXIS
control in

stance
calcu-

lating for
Job 1?

syncAXIS
control in

stance
calcu-

lating for
Job 2?

syncAXIS
control in

stance
executes
Job 1?

syncAXIS
control in

stance
executes
Job 2?

RTC6
acquired?

(b)

Posi-
tioning
stage
“1”

acquired?
(b)

Posi-
tioning
stage
“2”

acquired?
(b)

0 No. – – – – – – – – No. No. No.(c)(d)

1 Yes. – No. – – – – – – No. No. No.
2 Yes. slsc_cfg_initialize_from_file(e) No. – – – – – – No. No. No.
3 Yes. – Yes. No. Yes. – – – – Yes. Yes. No.
4 Yes. slsc_list_begin Yes. No. Yes. No. No. No. No. Yes. Yes. No.
5 Yes. slsc_list_* Yes. No. Yes. Yes. No. No. No. Yes. Yes. No.
6 Yes. slsc_list_** Yes. No. Yes. Yes. No. No. No. Yes. Yes. No.
7 Yes. slsc_ctrl_get_exec_state(f) Yes. No. Yes. Yes. No. No. No. Yes. Yes. No.
8 Yes. slsc_ctrl_start_execution Yes. No. Yes. Yes. No. No. No. Yes. Yes. No.
9 Yes. – Yes. No. Yes. Yes. No. Yes. No. Yes. Yes. No.
10 Yes. slsc_list_end Yes. No. Yes. Yes. No. Yes. No. Yes. Yes. No.
11 Yes. – Yes. No. Yes. Yes. No. Yes. No. Yes. Yes. No.
12 Yes. slsc_list_begin Yes. No. Yes. Yes. No. Yes. No. Yes. Yes. No.
13 Yes. slsc_list_* Yes. No. Yes. Yes. No. Yes. No. Yes. Yes. No.
14 Yes. slsc_list_** Yes. No. Yes. Yes. No. Yes. No. Yes. Yes. No.
15 Yes. – Yes. No. Yes. Yes. No. Yes. No. Yes. Yes. No.
16 Yes. – Yes. No. Yes. No.(g) Yes. Yes. No. Yes. Yes. No.
17 Yes. – Yes. No. Yes. No. Yes. Yes. No. Yes. Yes. No.
18 Yes. slsc_ctrl_get_exec_state Yes. No. Yes. No. Yes. No.(h) No. Yes. Yes. No.
19 Yes. slsc_ctrl_get_exec_state(f) Yes. No. Yes. No. Yes. No. No. Yes. Yes. No.

GUI GUI

callslsc_*
syncAXIS

control Inst.
syncAXIS

control Inst.
Job

Queue
syncAXIS

control Inst.

Job 1

syncAXIS
control Inst.

Job 2

syncAXIS
control Inst.

Job 1

syncAXIS
control Inst.

Job 2 RTC6
A B

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
2 Software Development with the syncAXIS-DLL

75

innovators for industry

20 Yes. – Yes. No. Yes. No. Yes. No. No. Yes. Yes. No.
21 Yes. slsc_ctrl_unfollow Yes. No. Yes. No. Yes. No. No. Yes. Yes. No.
22 Yes. – Yes. Yes. Yes. No. Yes. No. No. Yes. No.(d) No.
23 Yes. slsc_ctrl_move_scanner_abs Yes. Yes. Yes. No. Yes. No. No. Yes. No.(d) No.
24 Yes. slsc_ctrl_move_stage_abs(i) Yes. Yes. Yes. No. Yes. No. No. Yes. No.(d) No.
25 Yes. – Yes. Yes. Yes. No. Yes. No. No. Yes. No.(d) No.
26 Yes. slsc_cfg_select_stage(Stage = 2)(j) Yes. Yes. Yes. No. Yes. No. No. Yes. No.(d) No.
27 Yes. – Yes. Yes. Yes. No. Yes. No. No. Yes. No. No.(d)
28 Yes. slsc_ctrl_move_scanner_abs Yes. Yes. Yes. No. Yes. No. No. Yes. No. No.(d)
29 Yes. slsc_ctrl_move_stage_abs(k) Yes. Yes. Yes. No. Yes. No. No. Yes. No. No.(d)
30 Yes. – Yes. Yes. Yes. No. Yes. No. No. Yes. No. No.(d)
31 Yes. slsc_ctrl_follow Yes. Yes. Yes. No. Yes. No. No. Yes. No. No.(d)
32 Yes. – Yes. No. Yes. No. Yes. No. No. Yes. No. Yes.
33 Yes. slsc_ctrl_start_execution Yes. No. Yes. No. Yes. No. No. Yes. No. Yes.
34 Yes. – Yes. No. Yes. No. Yes. No. Yes. Yes. No. Yes.
35 Yes. slsc_list_end Yes. No. Yes. No. Yes. No. Yes. Yes. No. Yes.
36 Yes. – Yes. No. Yes. No. Yes. No. Yes. Yes. No. Yes.
37 Yes. – Yes. No. Yes. No. Yes. No. Yes. Yes. No. Yes.
38 Yes. – Yes. No. Yes. No. No.(l) No. Yes. Yes. No. Yes.
39 Yes. – Yes. No. Yes. No. No. No. Yes. Yes. No. Yes.
40 Yes. – Yes. No. Yes. No. No. No. Yes. Yes. No. Yes.
41 Yes. slsc_ctrl_get_exec_state Yes. No. Yes. No. No. No. No.(m) Yes. No. Yes.
42 Yes. – Yes. No. Yes. No. No. No. No. Yes. No. Yes.
43 Yes. slsc_cfg_delete Yes. No. Yes. No. No. No. No. Yes. No. Yes.
44 Yes. – No. No. No. No. No. No. No. No. No. No.
45 No. – No. No. No. No. No. No. No. No. No. No.

(a) syncAXIS-DLL-based user program, for example, a GUI.

(b) By the syncAXIS control instance.

(c) “2” positioning stage can be acquired by “another” user program.

(d) This positioning stage can be positioned by the syncAXIS-DLL. Here, an ACS point-to-point motion command is sent to
ACS Motion Controller via TCP/IP. This can be used for preparations for subsequent workpiece processing, for example, setting up, moving,
workpiece feeding, imaging, measuring, positioning.

(e) It is assumed, that positioning stage 1 and Operation mode “ScannerAndStage“ are entered in syncAXISConfig.xml.

(f) slsc_ExecState_ReadyForExecution.

(g) Event job_end_planned, see Figure 12.

(h) Event job_finished_executing, see Figure 12.

(i) Sends an ACS point-to-point motion command for positioning stage 1 to ACS Motion Controller via TCP/IP.

(j) Requires a correspondingly configured Dongle!

(k) Sends an ACS point-to-point motion command for positioning stage 1 to ACS Motion Controller via TCP/IP.

(l) Event job_end_planned, see Figure 12.

(m) Event job_finished_executing, see Figure 12.

Time

*.exe(a)
running?

*.exe
calls…

syncAXIS
control in

stance
existing?

syncAXIS
control in
stance in

Mode
“Manual

Posi-
tioning“?

syncAXIS
control in

stance
with

queue?

syncAXIS
control in

stance
calcu-

lating for
Job 1?

syncAXIS
control in

stance
calcu-

lating for
Job 2?

syncAXIS
control in

stance
executes
Job 1?

syncAXIS
control in

stance
executes
Job 2?

RTC6
acquired?

(b)

Posi-
tioning
stage
“1”

acquired?
(b)

Posi-
tioning
stage
“2”

acquired?
(b)

GUI GUI

callslsc_*
syncAXIS

control Inst.
syncAXIS

control Inst.
Job

Queue
syncAXIS

control Inst.

Job 1

syncAXIS
control Inst.

Job 2

syncAXIS
control Inst.

Job 1

syncAXIS
control Inst.

Job 2 RTC6
A B

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

76

innovators for industry

3 Functions Available in the API

3.1 Functional Overview

In this chapter:

• Configuration Functions (slsc_cfg_*), page 76

• Job Functions (slsc_list_*), page 85

• Control Functions (slsc_ctrl_*), page 96

• Utility Functions (slsc_util_*), page 101

3.1.1 Configuration Functions
(slsc_cfg_*)

Configuration function (prefix slsc_cfg_) allow
creating/deleting/reinitializing
syncAXIS control instances and querying and setting
their properties (“configuration”).

Furthermore, the positioning stage can be tempo-
rarily released (for example, to be controlled “exter-
nally”) and subsequently acquired back on again.
Optionally, during the temporal release, a different
target positioning stage can be specified (which is
then going to be acquired subsequently). That way it
is possible to work alternately with several
positioning stages. For further information, see
Chapter 2.12.2 ”Example – Temporarily Releasing the
Positioning Stage and Changing the Target
Positioning Stage”, page 74.
For a graphical overview, see Figure 30, page 77.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

77

innovators for industry

30
Configuration functions (slsc_cfg_*): graphical overview.

To query properties

To query the syncAXIS-DLL version
slsc_cfg_get_sync_axis_version

To query the configuration
slsc_cfg_get_trajectory_config

To query the syncAXIS control instance
state (“traffic light color”)
slsc_cfg_get_operation_status

To query the operating mode
(positioning stage and/or scan head)
slsc_cfg_get_mode

To query current configuration values
(having a correspondence to
syncAXISConfig.xml)
slsc_cfg_get_calculation_dynamics_jump
_scan_device »LIST
slsc_cfg_get_calculation_dynamics_mark
_scan_device »LIST
slsc_cfg_get_calculation_dynamics_stage
slsc_cfg_get_dynamic_limits_scan_device
slsc_cfg_get_dynamic_limits_stage
slsc_cfg_get_dynamic_violation_reaction
slsc_cfg_get_field_limits_scan_device
slsc_cfg_get_field_limits_stage
slsc_cfg_get_scan_device_dynamic_monit
oring_level
slsc_cfg_get_simulation_setting
slsc_cfg_get_stage_dynamic_monitoring_
level

To calculate a jump duration
slsc_cfg_get_jump_time

syncAXIS control instance: Create
slsc_cfg_initialize_from_file

syncAXIS control instance: Is running

syncAXIS control instance: Delete
slsc_cfg_delete

To change properties

To change the return behavior of Job functions (slsc_list_*)
slsc_cfg_set_list_handling_mode
slsc_cfg_set_list_handling_mode_with_context

To change the configuration (as of next Job)
slsc_cfg_select_heuristic
slsc_cfg_set_bandwidth
slsc_cfg_set_jump_speed »LIST
slsc_cfg_set_mark_speed »LIST
slsc_cfg_set_trajectory_config

To change the operating mode (positioning stage and/or scan head)
slsc_cfg_set_mode

Which Callback function to call at which syncAXIS-DLL-internal event
slsc_cfg_register_callback_job_start_planned
slsc_cfg_register_callback_job_progress_planned
slsc_cfg_register_callback_job_end_planned
slsc_cfg_register_callback_job_loaded_enough
slsc_cfg_register_callback_job_is_executing
slsc_cfg_register_callback_job_finished_executing

Temporarily release positioning stage and reacquire
slsc_cfg_release_stage (deprecated)
slsc_cfg_acquire_stage (deprecated)

To specify a target positioning stage
slsc_cfg_select_stage

To change target point coordinates (as of next Job)
slsc_cfg_set_rot_and_offset_2d »LIST (angle & offset value)
slsc_cfg_set_matrix_and_offset »LIST (transformation matrix & offset value)

To configure, switch on/off “Contour-dependent speed calculation“
slsc_cfg_set_contour_dependent_speed_control_2d »LIST

To apply Matrix/Offset to the set trajectory for scan device
slsc_cfg_set_part_displacement

To change current configuration values (having a correspondence to syncAXISConfig.xml)
slsc_cfg_set_calculation_dynamics_jump_scan_device »LIST,
slsc_cfg_set_calculation_dynamics_mark_scan_device »LIST,
slsc_cfg_set_calculation_dynamics_stage, slsc_cfg_set_dynamic_limits_scan_device,
slsc_cfg_set_dynamic_limits_stage, slsc_cfg_set_dynamic_violation_reaction,
slsc_cfg_set_field_limits_scan_device, slsc_cfg_set_field_limits_stage,
slsc_cfg_set_scan_device_dynamic_monitoring_level,
slsc_cfg_set_simulation_setting, slsc_cfg_set_stage_dynamic_monitoring_level

Reinitialize
slsc_cfg_reinitialize
slsc_cfg_reinitialize_from_file

»LIST: corresponding Job function available.

Copy and set to simulation mode
slsc_cfg_initialize_copy

Configuration Functions (slsc_cfg_*)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

78

innovators for industry

syncAXIS control instance-related Functions

• slsc_cfg_acquire_stage (deprecated) outdated

• slsc_cfg_delete

• slsc_cfg_get_calculation_dynamics_jump_scan_
device

• slsc_cfg_get_calculation_dynamics_mark_scan_
device

• slsc_cfg_get_calculation_dynamics_stage

• slsc_cfg_get_dynamic_limits_scan_device

• slsc_cfg_get_dynamic_limits_stage

• slsc_cfg_get_dynamic_violation_reaction

• slsc_cfg_get_field_limits_scan_device

• slsc_cfg_get_field_limits_stage

• slsc_cfg_get_jump_time

• slsc_cfg_get_mode

• slsc_cfg_get_operation_status

• slsc_cfg_get_scan_device_dynamic_monitoring_
level

• slsc_cfg_get_stage_dynamic_monitoring_level

• slsc_cfg_get_sync_axis_version

• slsc_cfg_get_trajectory_config

• slsc_cfg_initialize_copy

• slsc_cfg_initialize_from_file

• slsc_cfg_reinitialize

• slsc_cfg_reinitialize_from_file

• slsc_cfg_release_stage (deprecated) outdated

• slsc_cfg_select_stage

• slsc_cfg_set_list_handling_mode

• slsc_cfg_set_list_handling_mode_with_context

• slsc_cfg_set_matrix_and_offset

• slsc_cfg_set_mode

• slsc_cfg_set_trajectory_config

In order to make use of the syncAXIS-DLL, a function
to create a syncAXIS control instance must be
present at the beginning of the user program. This is
done with slsc_cfg_initialize_from_file by speci-
fying a valid XML configuration file(1)(2).

In the process, a unique Handle is assigned to the
syncAXIS control instance through which it can be
addressed (almost all functions require a
Handle value to be specified). Furthermore, the
hardware is acquired (RTC6 board and positioning
stage). For further information see Chapter 2.4
”About Initializing syncAXIS control-based User
Programs”, page 26.

A syncAXIS control instance can either be reini-
tialized by slsc_cfg_reinitialize_from_file (based on
the syncAXISConfig.xml) or slsc_cfg_reinitialize (based
on the current configuration state). Thereby the
Handle value remains unchanged.

The current status (“traffic light color”) of a
syncAXIS control instance is queried by
slsc_cfg_get_operation_status.

In order to query the Trajectory planning configu-
ration values, slsc_cfg_get_trajectory_config is
available (to change these, see Section ”Functions for
Changing the Configuration of the Present
syncAXIS-DLL Instance”, page 80).

Caution!
Make sure that laser safety is ensured in the
entire system. In the safety concept of your
system control, take into account that the RTC
laser control signals are enabled by
slsc_cfg_initialize_from_file and
slsc_ctrl_enable_laser.

(1) XSD file (XML Schema Definition; syncAXIS_1_8.xsd)
and XML configuration file templates are part of the
delivery.

(2) In syncAXISConfig.xml, a number of
syncAXIS control instance configuration parameters
(suitable for the respective system or application) are
to be specified. You can find a description of these
parameters as inline comments in the syncAXIS_1_8.xsd
as well as in Chapter 13 ”Appendix F: Reference of
syncAXISConfig.xml Tags”, page 358. Some of the
parameter values can be changed by syncAXIS-DLL
functions in the user program at runtime.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

79

innovators for industry

To query current values of the
syncAXIS control instance for which there are equiv-
alents/decided tags in the syncAXISConfig.xml, are
available:

• slsc_cfg_get_calculation_dynamics_jump_scan_
device

• slsc_cfg_get_calculation_dynamics_mark_scan_
device

• slsc_cfg_get_calculation_dynamics_stage

• slsc_cfg_get_dynamic_limits_scan_device

• slsc_cfg_get_dynamic_limits_stage

• slsc_cfg_get_dynamic_violation_reaction

• slsc_cfg_get_field_limits_scan_device

• slsc_cfg_get_field_limits_stage

• slsc_cfg_get_scan_device_dynamic_monitoring_
level

• slsc_cfg_get_stage_dynamic_monitoring_level

The syncAXIS-DLL version can be queried by
slsc_cfg_get_sync_axis_version.

slsc_cfg_set_mode sets the Operation mode (
“StageOnly”/“ScannerOnly“/“ScannerAndStage”; see enum
slsc_OperationMode) the syncAXIS control instance
shall work. In the process, the
syncAXIS control instance is reinitialized!

slsc_cfg_initialize_copy puts a copy of a
syncAXIS control instance to simulation mode
without changing its configuration.
slsc_cfg_initialize_copy can be used, for example, in
the context of recording Module files. For this,
slsc_cfg_initialize_copy is called prior to
slsc_list_begin_module (this function requires the
simulation mode), see also Section ”Functions for
“Modules””, page 95.

The currently set Operation mode of the
syncAXIS control instance is queried by
slsc_cfg_get_mode.

For slsc_cfg_select_stage, see Chapter 2.12.2
”Example – Temporarily Releasing the
Positioning Stage and Changing the Target
Positioning Stage”, page 74. Note that
slsc_cfg_release_stage
(deprecated)/slsc_cfg_acquire_stage (deprecated)
are outdated and should no longer be used for this
use case.

By slsc_cfg_get_simulation_setting, the current
Simulation Setting can be queried, see also
Chapter 2.5 ”About the syncAXIS control
Simulation Mode”, page 31. For changing,
slsc_cfg_set_simulation_setting is available. In the
process, the syncAXIS control instance is reini-
tialized!

By slsc_cfg_set_list_handling_mode the return
behavior of the Job functions (slsc_list_*) can be
modified. With
slsc_cfg_set_list_handling_mode_with_context, a
context can be specified in addition.

To be able to change target point coordinates (see
page 268) of slsc_list_arc_abs,
slsc_list_circle_2d_abs, slsc_list_jump_abs,
slsc_list_mark_abs and their corresponding
slsc_list_[para/multi_para]* functions for a
syncAXIS control instance,
slsc_cfg_set_rot_and_offset_2d and
slsc_cfg_set_matrix_and_offset are available. With
slsc_cfg_set_rot_and_offset_2d an angle and
offset value can be specified, with
slsc_cfg_set_matrix_and_offset a transformation
matrix and an offset value.
For both there are corresponding Job functions
(slsc_list_*) which are
slsc_list_set_rot_and_offset_2d and
slsc_list_set_matrix_and_offset, see also Section
”Functions for Changing Target Point Coordinates”,
page 92.

The “Contour-dependent speed calculation“ can be
configured as well as switched on and off by
slsc_cfg_set_contour_dependent_speed_control_
2d. For prerequisites and further information, see
Chapter 2.9.5 ”About the “Contour-dependent
speed calculation“”, page 60. For
slsc_cfg_set_contour_dependent_speed_control_
2d there is the corresponding Job function
(slsc_list_*)
slsc_list_set_contour_dependent_speed_control_
2d.

By slsc_cfg_get_jump_time a Job can be analyzed
and optimized - without having to simulate it as a
whole. See also Chapter 2.2.4 ”Simulating and
Improving Jobs”, page 24.

At the end of the user program, slsc_cfg_delete
must be inserted in order to erase the
syncAXIS control instance and to release the
hardware.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

80

innovators for industry

Functions for Changing the Configuration of
the Present syncAXIS-DLL Instance

• slsc_cfg_select_heuristic

• slsc_cfg_set_bandwidth

• slsc_cfg_set_calculation_dynamics_jump_scan_d
evice

• slsc_cfg_set_calculation_dynamics_mark_scan_d
evice

• slsc_cfg_set_calculation_dynamics_stage

• slsc_cfg_set_dynamic_limits_scan_device

• slsc_cfg_set_dynamic_limits_stage

• slsc_cfg_set_dynamic_violation_reaction

• slsc_cfg_set_field_limits_scan_device

• slsc_cfg_set_field_limits_stage

• slsc_cfg_set_jump_speed

• slsc_cfg_set_mark_speed

• slsc_cfg_set_part_displacement

• slsc_cfg_set_scan_device_dynamic_monitoring_l
evel

• slsc_cfg_set_stage_dynamic_monitoring_level

• slsc_cfg_set_trajectory_config (with
slsc_cfg_delete_trajectory_config)

These functions have in common:

• There is no reinitialization of the
syncAXIS control instance.

• The specified configuration changes become
effective only after slsc_list_begin*. These
configuration changes are valid as of the next Job
for all Jobs that follow.

Notes

• For slsc_cfg_set_jump_speed there is the corre-
sponding Job function (slsc_list_*)
slsc_list_set_jump_speed.

• For slsc_cfg_set_mark_speed there is the corre-
sponding Job function (slsc_list_*)
slsc_list_set_mark_speed.

• slsc_cfg_set_trajectory_config sets the
Trajectory planning configuration values for the
specified syncAXIS control instance.

• slsc_cfg_delete_trajectory_config is an auxiliary
function for software development. With it, the
trajectory configuration object (which is created
by slsc_cfg_set_trajectory_config) can be
deleted again once it is no longer needed (in
order to avoid memory leaks).
slsc_cfg_delete_trajectory_config does not
change any configuration parameter values.

• For further information on
slsc_cfg_set_part_displacement, see
Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332.

• Different Jobs each have different “optimal”
FilterBandwidth values. Besides the possibility to
change the FilterBandwidth value in the
user program, slsc_cfg_set_bandwidth is also
provided to be able to implement optimization
algorithms.

• slsc_cfg_select_heuristic sets the desired
characteristic for the speed reduction
(DynamicReductionFunction).

• To change current values of the
syncAXIS control instance for which there are
equivalents/decided tags in the syncAXISConfig.xml,
are available:
– slsc_cfg_set_calculation_dynamics_jump_sca

n_device
– slsc_cfg_set_calculation_dynamics_mark_sca

n_device
– slsc_cfg_set_calculation_dynamics_stage
– slsc_cfg_set_dynamic_limits_scan_device
– slsc_cfg_set_dynamic_limits_stage
– slsc_cfg_set_dynamic_violation_reaction
– slsc_cfg_set_field_limits_scan_device
– slsc_cfg_set_field_limits_stage
– slsc_cfg_set_scan_device_dynamic_monitori

ng_level
– slsc_cfg_set_stage_dynamic_monitoring_leve

l

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

81

innovators for industry

Functions for Registering “Callback Events“

• slsc_cfg_register_callback_job_start_planned

• slsc_cfg_register_callback_job_progress_planne
d

• slsc_cfg_register_callback_job_end_planned

• slsc_cfg_register_callback_job_finished_executi
ng

• slsc_cfg_register_callback_job_is_executing

• slsc_cfg_register_callback_job_loaded_enough

As shown in Figure 12, page 43, and following Table,
different “Callback event” occur
syncAXIS control instance-internally several times for
each Job. A corresponding Function for registering
“Callback events” is available for each of these
“Callback events“, for example,
slsc_cfg_register_callback_job_end_planned for
“job_finished_executing”.

These functions allow to configure the
syncAXIS control instance so that the specified user-
defined function (= “Callback function”) is called as
soon as the associated “Callback event“ occurs.

Each “Callback function” must meet the predefined
convention (return types, calling conventions,
arguments), see the both
Callback function signatures slsc_ExecTimeCallback
and slsc_JobCallback.

Name of the
“Callback event“

Frequency
per Job

Corresponding “Function for registering
“Callback events””

Mandatory signature for
the “Callback function“

job_start_planned 1 × slsc_cfg_register_callback_job_start_planned slsc_JobCallback

job_progress_planned May occur
several times(a)

slsc_cfg_register_callback_job_progress_planned slsc_ExecTimeCallback

job_end_planned 1 × slsc_cfg_register_callback_job_end_planned slsc_ExecTimeCallback

job_loaded_enough 1 × slsc_cfg_register_callback_job_loaded_enough slsc_JobCallback

job_is_executing May occur
several times

slsc_cfg_register_callback_job_is_executing slsc_ExecTimeCallback

job_finished_executing 1 × slsc_cfg_register_callback_job_finished_executing slsc_ExecTimeCallback

(a) With very short Jobs: even possibly not at all.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

82

innovators for industry

Notes

• Simple usage examples are:
– External (= by a GUI) monitoring of the Job

progress
– A “red traffic light” in a GUI as long as a Job is

executed
– A GUI message once a Job is finished

• Code examples:
– Exemplary implementation using function

pointers,
see Figure 31, page 83.

– Exemplary implementation using C++11
lambda functions (anonymous functions),
see Figure 32, page 84.

• The “Callback function“ specified with
slsc_cfg_register_callback_job_start_planned
is executed once the Trajectory planning has been
started for the Job. This means slsc_list_begin[*]
has been called and processed and the first
Job function (like slsc_list_jump_abs etc.) has
been called and successfully processed through
the validation check. Buffers have to be filled
sufficiently for the Trajectory planning to start
and the motion for scan head and positioning
stage can be decomposed.

• The “Callback function“ specified in
slsc_cfg_register_callback_job_progress_plan
ned is executed repeatedly while the Job
planning is in progress. This means the Callback
function specified in
slsc_cfg_register_callback_job_start_planned
already has been executed. With very short Jobs,
the “Callback event“ of type
“job_progress_planned“ might not occur at all.

• The “Callback function“ specified in
slsc_cfg_register_callback_job_loaded_enoug
h is executed once the Job planning processed
enough so the Job could be started. This means
that the information transfer to the RTC6 board
has been started and some RTC6 commands have
been written to the RTC6 list memory.

Around this moment, the execution state
(slsc_ExecState) of the Job also transverses to
slsc_ExecState_ReadyForExecution (not necessarily
exactly the same moment due to internal infor-
mation polling. To check if the Job execution can
be started, SCANLAB recommends not to rely on
the “Callback function“ but to use
slsc_ctrl_get_exec_state instead. From this
moment on, the Job execution can be started by
slsc_ctrl_start_execution.

• The “Callback function“ specified in
slsc_cfg_register_callback_job_end_planned is
executed after the Job planning has been
finished. This means that all the calculation has
been done and the calculation of the next Job will
start, if another Job planning has been started by
the user. syncAXIS control will continue trans-
ferring the remaining information to the
RTC6 board. From this moment on, users can
query the Job characteristics (“Key“) by
slsc_ctrl_get_job_characteristic, if desired.

• The “Callback function“ specified in
slsc_cfg_register_callback_job_is_executing is
executed repeatedly while the Job execution is in
progress. This means the “job_loaded_enough“
“Callback event” has already occurred and the
Job execution has actually been started by
slsc_ctrl_start_execution. At this moment, the
execution state (slsc_ExecState) of the Job trans-
verses to slsc_ExecState_Executing. With very short
Jobs, the “Callback event“ of type
“job_is_executing“ might not occur at all.

• The “Callback function“ specified in
slsc_cfg_register_callback_job_finished_execu
ting is executed once the Job execution finished.
This means that the scan head and positioning
stage reached their final position and stopped
their movement. At this moment, the execution
state (slsc_ExecState) of the Job transverses to
slsc_ExecState_Idle. No more “Callback event”
regarding this Job will occur.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

83

innovators for industry

31
Code example: implementation of the functions for registering “Callback events” (see page 12) and “Callback functions”.
Other than in Figure 32, page 84, here, function pointers are used.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// Functions and concepts are utilized that are declared and defined in the “Installation_Project”
// of the syncAXIS control-software package, see there.

struct Content
{

int* Counter;
std::string Action;

};

void execCallbackFunction(size_t JobID, uint64_t Progress, double ExecTime, void* Context)
{

Content* CallbackContent = static_cast<Content*>(Context);
std::cout << “Step number “ << (*CallbackContent->Counter)++ << “ “ << CallbackContent->Action << “. Execution up to now took: “
<< ExecTime << std::endl; return;

};

void jobCallbackFunction(size_t JobID, void* Context)
{

Content* CallbackContent = static_cast<Content*>(Context);
std::cout << “Step number “ << (*CallbackContent->Counter)++ << “ “ << CallbackContent->Action << “.“<< std::endl;
return;

};

size_t SLHandle = 0;
// Initialize Instance, e.g.
slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml“);

int ProcessCounter = 0;

Content ContentIsPlanning= { &ProcessCounter, “is planning“ };
Content ContentIsExecuting = { &ProcessCounter, “is executing“ };
Content ContentPlanningStarted = { &ProcessCounter, “started the planning“ };
Content ContentJobFinished = { &ProcessCounter, “finished the execution“ };
Content ContentPlanningFinished = { &ProcessCounter, “finished the planning“ };
Content ContentJobReady = { &ProcessCounter, “loaded enough information in the buffers to start the execution.“ };

slsc_cfg_register_callback_job_finished_executing(SLHandle, static_cast<slsc_ExecTimeCallback>(&execCallbackFunction), &ContentJobFinished);
slsc_cfg_register_callback_job_end_planned(SLHandle, static_cast<slsc_ExecTimeCallback>(&execCallbackFunction), &ContentPlanningFinished);
slsc_cfg_register_callback_job_loaded_enough(SLHandle, static_cast<slsc_JobCallback>(&jobCallbackFunction), &ContentJobReady);
slsc_cfg_register_callback_job_is_executing(SLHandle, static_cast<slsc_ExecTimeCallback>(&execCallbackFunction), &ContentIsExecuting);
slsc_cfg_register_callback_job_progress_planned(SLHandle, static_cast<slsc_ExecTimeCallback>(&execCallbackFunction), &ContentIsPlanning);
slsc_cfg_register_callback_job_start_planned(SLHandle, static_cast<slsc_JobCallback>(&jobCallbackFunction), &ContentPlanningStarted);

// Execute random job, e.g. (from Installation Project)
{

double ScalingFactor = 10;
auto ListFilling = std::async(std::launch::async, [&]()
{

return writeMarkingPattern1(SLHandle, RetVal, ScalingFactor, Transformation, Offset);
});

startJob(SLHandle, RetVal, true);
}

// Delete Instance, e.g.
slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

84

innovators for industry

32
Code example: implementation of the functions for registering “Callback events” (see page 12) and “Callback functions”.
Other than in Figure 31, page 83, here, C++11 Lambda functions (Anonymous functions) are used.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// Functions and concepts are utilized that are declared and defined in the “Installation_Project”
// of the syncAXIS control-software package, see there.

struct Content
{

int* Counter;
std::string Action;

};

size_t SLHandle = 0;
//Initialize Instance, e.g.
slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml“);

int ProcessCounter = 0;

Content ContentIsPlanning= { &ProcessCounter, “is planning“ };
Content ContentIsExecuting = { &ProcessCounter, “is executing“ };
Content ContentPlanningStarted = { &ProcessCounter, “started the planning“ };
Content ContentJobFinished = { &ProcessCounter, “finished the execution“ };
Content ContentPlanningFinished = { &ProcessCounter, “finished the planning“ };
Content ContentJobReady = { &ProcessCounter, “loaded enough information in the buffers to start the execution.“ };

slsc_ExecTimeCallback ExecCallback = [](size_t JobID, uint64_t Progress, double ExecTime, void* Context)
{

Content* CallbackContent = static_cast<Content*>(Context);
std::cout << “Step number “ << (*CallbackContent->Counter)++ << “ “ << CallbackContent->Action << “. Execution up to now took: “
<< ExecTime << std::endl; return;

};

slsc_JobCallback JobCallback = [](size_t JobID, void* Context)
{

Content* CallbackContent = static_cast<Content*>(Context);
std::cout << “Step number “ << (*CallbackContent->Counter)++ << “ “ << CallbackContent->Action << “.“ << std::endl;
return;

};

slsc_cfg_register_callback_job_finished_executing(SLHandle, ExecCallback, &ContentJobFinished);
slsc_cfg_register_callback_job_end_planned(SLHandle, ExecCallback, &ContentPlanningFinished);
slsc_cfg_register_callback_job_loaded_enough(SLHandle, JobCallback, &ContentJobReady);
slsc_cfg_register_callback_job_is_executing(SLHandle, ExecCallback, &ContentIsExecuting);
slsc_cfg_register_callback_job_progress_planned(SLHandle, ExecCallback, &ContentIsPlanning);
slsc_cfg_register_callback_job_start_planned(SLHandle, JobCallback, &ContentPlanningStarted);

// execute random job, e.g. (from Installation Project)
{

double ScalingFactor = 10;
auto ListFilling = std::async(std::launch::async, [&]()
{

return writeMarkingPattern1(SLHandle, RetVal, ScalingFactor, Transformation, Offset);
});

startJob(SLHandle, RetVal, true);
}

// Delete Instance, e.g.
slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

85

innovators for industry

3.1.2 Job Functions (slsc_list_*)

Job functions (prefix slsc_list_) allow defining Jobs,
that is, they are the individual elements of Jobs.
Particularly important are the functions for markings
and jumps, as well as for switching signals at output
ports (apart from the mandatory functions for the
begin and end of Jobs).
For a graphical overview, see Figure 33, page 86.

Notes

• The following applies to all Job functions
(slsc_list_*): upon submission from the
user program to the syncAXIS control instance, a
consistency check is carried out. In case of an
error, the return value indicates that Bit #07 is set
(JobStructureNotValid).

• See also Section ”Structure to Comply with when
Defining Jobs”, page 25.

• Job functions (prefix slsc_list_) are technically
totally different from “RTC list commands (suffix
_list)” which are described in the RTC6 Manual.
Therefore, they are not designated as such in this
document. Among other things, the execution
times of Job functions are not exactly predictable
from a user’s point of view (unlike RTC list
commands). Furthermore, there are Job functions
which generate several RTC6 list commands for
the RTC6 board.

• The very last Job function in a Job must be
slsc_list_end. It calculates a completion for the
Trajectory. After that (as with
slsc_cfg_initialize_from_file and
slsc_cfg_reinitialize_from_file)
– the scan head mirrors are in the zero position

and
– the positioning stage (not relevant with

Operation mode “ScannerOnly“) remains at the
last set jump position or marking position.

Functions for Defining Job-Beginnings/Ends

• slsc_list_begin

• slsc_list_begin_absolute

• slsc_list_begin_relative

• slsc_list_end

The first function of a Job must be slsc_list_begin,
(alternatively slsc_list_begin_absolute or
slsc_list_begin_relative, see their reference tables).
Otherwise, the return value indicates that Bit #07 is
set (JobStructureNotValid).

None of the functions slsc_list_begin,
slsc_list_begin_absolute and
slsc_list_begin_relative must be followed by
slsc_list_begin, slsc_list_begin_absolute or
slsc_list_begin_relative.
Otherwise, the return value indicates that Bit #07 is
set (JobStructureNotValid).

slsc_list_end must be the last Job function in a Job,
see list bullet on the left.

Functions for Defining Jumps

• slsc_list_jump_abs

• slsc_list_jump_abs_min_time

By slsc_list_jump_abs_min_time a jump can be
defined – as by slsc_list_jump_abs – but additionally
allows to specify its minimum duration.

The corresponding slsc_list_para* function of
slsc_list_jump_abs is slsc_list_para_jump_abs, that
of slsc_list_jump_abs_min_time is
slsc_list_para_jump_abs_min_time.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

86

innovators for industry

33
Job functions (slsc_list_*): graphical overview.

Job: Formal beginning
slsc_list_begin
slsc_list_begin_relative

Job: Elements

To set signals
At analog output port
slsc_list_write_analog_x

At digital output port
slsc_list_write_digital_out
slsc_list_write_digital_out_mask (per bit mask)

To set the value of a free variable on the RTC6
slsc_list_set_free_variable

Job: Formal end
slsc_list_end

To change the jump speed = JumpSpeed value
(only current Job)
slsc_list_set_jump_speed »CFG

To change the marking speed = MarkSpeed value
(only current Job)
slsc_list_set_mark_speed »CFG

To change the minimal marking speed
= MinimalMarkSpeed value (only current Job)
slsc_list_set_min_mark_speed

To change the ApproxBlendLimit value
(only current Job)
slsc_list_set_approx_blend_limit

To define jumps to target coordinates
slsc_list_jump_abs, slsc_list_jump_abs_min_time
slsc_list_para_jump_abs(a), slsc_list_para_jump_abs_min_time(a)

To define markings to target coordinates
Circles/arcs
slsc_list_circle_2d_abs
slsc_list_dashed_circle_2d_abs
slsc_list_para_circle_2d_abs(a)
slsc_list_para_dashed_circle_2d_abs(a)
slsc_list_multi_para_circle_2d_abs(b)
slsc_list_multi_para_dashed_circle_2d_abs(b)
slsc_list_arc_abs
slsc_list_dashed_arc_abs
slsc_list_para_arc_abs(a)
slsc_list_para_dashed_arc_abs(a)
slsc_list_multi_para_arc_abs(b)
slsc_list_multi_para_dashed_arc_abs(b)
Vectors
slsc_list_mark_abs
slsc_list_dashed_mark_abs
slsc_list_para_mark_abs(a)
slsc_list_para_dashed_mark_abs(a)
slsc_list_multi_para_mark_abs(b)
slsc_list_multi_para_dashed_mark_abs(b)
Special case:
slsc_list_wait_with_laser_off
slsc_list_wait_with_laser_on (supplemented by
slsc_list_suppress_spotdistance_control &
slsc_list_unsuppress_spotdistance_control)
(a) for simple Ramps
(b) for more complex Ramps

To switch on/off the processing of arguments
ParaTarget and MultiParaTarget (for Ramps) of the
slsc_list_[para/multi_para]*-functions
(only current Job)
slsc_list_para_enable
slsc_list_para_disable

To switch on/off the “Contour-dependent speed calculation“; to
change the speed determination
(only current Job)
slsc_list_set_contour_dependent_speed_control_2d »CFG

To change target point coordinates (only current Job)
slsc_list_set_rot_and_offset_2d »CFG
(angle & offset value)
slsc_list_set_matrix_and_offset »CFG
(transformation matrix & offset value)

»CFG corresponding Configuration function available.

Special case (for slsc_ctrl_unfollow/
slsc_ctrl_follow):
slsc_list_begin_absolute

To integrate a Module (“play back“)
slsc_list_playback_module
slsc_list_para_playback_module

To shift the “Laser Active” Operation
slsc_list_set_laser_on_move

To influence laser pulse output by HalfPeriod/PulseLength
slsc_list_set_laser_pulses

Special case (for
Module recording)
slsc_list_begin_module

To changeTrajectory planning values (only current Job)
slsc_list_set_calculation_dynamics_jump_scan_device »CFG
slsc_list_set_calculation_dynamics_mark_scan_device »CFG

Job Functions (slsc_list_*)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

87

innovators for industry

Functions for Defining Markings

• slsc_list_arc_abs

• slsc_list_circle_2d_abs

• slsc_list_mark_abs

• slsc_list_wait_with_laser_off

• slsc_list_wait_with_laser_on
(with supplementing
slsc_list_suppress_spotdistance_control and
slsc_list_unsuppress_spotdistance_control)

• slsc_list_set_laser_on_move

slsc_list_wait_with_laser_on behaves like a
slsc_list_mark_abs with velocity 0 (that is, for a spec-
ified time the mirrors remain in their last position
while the laser is switched on) and can be used, for
example, if the quality of the laser spot is to be
measured by external sensors.
slsc_list_wait_with_laser_on is supplemented by
slsc_list_wait_with_laser_off. The only difference
between the two functions is that the laser is
switched off with slsc_list_wait_with_laser_off.

Special Case: SpotDistance as an “ActiveChannel“

Only Sky Writings who (in syncAXISConfig.xml) have set
SpotDistance as “ActiveChannel”, see Chapter 2.9.2
”Definition of the Channels and ActiveChannel”,
page 48, must call
slsc_list_suppress_spotdistance_control prior to
slsc_list_wait_with_laser_on. Otherwise, no pulses
are initiated with triggerable lasers.

Background: With SpotDistance as temporal pulse
spacing (that is, the half-period for the LASER1
signals and LASER2 signals) is adjusted during Job
execution so that the spot spacing is ultimately equi-
distant. However, the syncAXIS-DLL-internal calcu-
lation for this is based on the current marking speed.
The lower it is, the larger is the pulse distance. Finally,
in the border case “marking speed = 0” (which is the
case with slsc_list_wait_with_laser_on, see above),
no more pulse is triggered from the laser.

A slsc_list_suppress_spotdistance_control call
(prior to slsc_list_wait_with_laser_on) suppresses
the functionality to achieve equidistant spot
distances until this state is cancelled by
slsc_list_unsuppress_spotdistance_control.

As long as the suppression persists the following is
used to trigger laser pulses:

• the HalfPeriod value of slsc_ctrl_set_laser_pulses,
or

• the HalfPeriod value of slsc_list_set_laser_pulses,
or

• the HalfPeriod attribute value from the
syncAXISConfig.xml tag LaserOutput

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

88

innovators for industry

About slsc_list_set_laser_on_move

slsc_list_set_laser_on_move delays the
“Laser Active” Operation by exactly the amount of
time needed to travel the specified path length
(PathLength) on the current marking section, see
Figure 34.

A use case is a marking pattern that is to be marked
several times with equidistant laser spot distances
(see SpotDistance and Chapter 2.9.5 ”About the
“Contour-dependent speed calculation“”, page 60)
(“multiple traversing”). For each repetition, the
“Laser Active” Operation can be delayed (that is, the
first laser pulse is shifted locally) by
slsc_list_set_laser_on_move. Thus, the laser pulses
of the individual traversings do not overlap, see
Figure 35.

The following applies to a
slsc_list_set_laser_on_move call between two
marking pattern sections with blending curve:

• The blending curve is replaced by a
Sky Writing-like motion

The following applies to a
slsc_list_set_laser_on_move call between two
marking pattern sections with “normal” traversing
(= neither a Sky Writing-like motion nor a
blending curve is inserted):

• At the transition of the two marking pattern
sections, it is switched to “Laser Standby”
Operation (see Figure 35, falling edge of the
LASERON signal)

• After the PathLength, it is switched back to
“Laser Active” Operation (see Figure 35, rising
edge at the arrow ends). If necessary, a
Sky Writing-like motion is inserted, so that the
LaserMinOffTime is not undercut

34
slsc_list_set_laser_on_move. See text for
explanations, page 87.

(!)

4.0 [mm]3.53.02.52.01.51.00.50.0

4.0 [mm]3.53.02.52.01.51.00.50.0

WITH set_laser_on_move(PathLength = 0.5)

WITHOUT set_laser_on_move

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

89

innovators for industry

35
slsc_list_set_laser_on_move. See text for explanations, page 87.

0

1
slsc_list_set_laser_on_move(2/3 * SpotDistance)

0

1
slsc_list_set_laser_on_move(1/3 * SpotDistance)

0

1
slsc_list_set_laser_on_move(0)

5 1

3×

+

(!)

(!)

LASERON signal

LASERON signal

LASERON signal

Traversing 3

Traversing 2

Traversing 1

Laser pulse, generated in previous traversings.

1st laser pulse of the current traversing.

Laser pulse, generated by the current traversing.

Legend

See Figure 36.

No “Laser Standby” Operation.
Duration of “Laser Standby” Operation.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

90

innovators for industry

36
Code example: slsc_list_set_laser_on_move.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

size_t JobID;
slsc_list_begin(SLHandle, &JobID);

// target points: 2 x 1 mm rectangle
const std::array<double, 2> LowerMid = { 0.0, 0.0 };
const std::array<double, 2> LowerRightCorner = { 1.0, 0.0 };
const std::array<double, 2> UpperRightCorner = { 1.0, 1.0 };
const std::array<double, 2> UpperLeftCorner = { -1.0, 1.0 };
const std::array<double, 2> LowerLeftCorner = { -1.0, 0.0 };

// Say spot distance is 10 µm
const double SpotDistance = 0.01; // mm

// Jump to start position
slsc_list_jump_abs(SLHandle, LowerMid.data());

// Traversing 1
slsc_list_set_laser_on_move(SLHandle, 0.0);

slsc_list_mark_abs(SLHandle, LowerRightCorner.data());
slsc_list_mark_abs(SLHandle, UpperRightCorner.data());
slsc_list_mark_abs(SLHandle, UpperLeftCorner.data());
slsc_list_mark_abs(SLHandle, LowerLeftCorner.data());
slsc_list_mark_abs(SLHandle, LowerMid.data());

// Traversing 2
slsc_list_set_laser_on_move(SLHandle, 1.0 / 3.0 * SpotDistance);

slsc_list_mark_abs(SLHandle, LowerRightCorner.data());
slsc_list_mark_abs(SLHandle, UpperRightCorner.data());
slsc_list_mark_abs(SLHandle, UpperLeftCorner.data());
slsc_list_mark_abs(SLHandle, LowerLeftCorner.data());
slsc_list_mark_abs(SLHandle, LowerMid.data());

// Traversing 3
slsc_list_set_laser_on_move(SLHandle, 2.0 / 3.0 * SpotDistance);

slsc_list_mark_abs(SLHandle, LowerRightCorner.data());
slsc_list_mark_abs(SLHandle, UpperRightCorner.data());
slsc_list_mark_abs(SLHandle, UpperLeftCorner.data());
slsc_list_mark_abs(SLHandle, LowerLeftCorner.data());
slsc_list_mark_abs(SLHandle, LowerMid.data());

slsc_list_end(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

91

innovators for industry

[*]dashed[*] Functions

• slsc_list_dashed_arc_abs

• slsc_list_dashed_circle_2d_abs

• slsc_list_dashed_mark_abs

• slsc_list_multi_para_dashed_arc_abs

• slsc_list_multi_para_dashed_circle_2d_abs

• slsc_list_multi_para_dashed_mark_abs

• slsc_list_para_dashed_arc_abs

• slsc_list_para_dashed_circle_2d_abs

• slsc_list_para_dashed_mark_abs

[*]dashed[*] Functions are specially designed to
enable/disable the laser spatially frequent along
marking pattern sections (see Mark functions).
Use cases are, for example, marking patterns having
hatchings from short lines .

To all [*]dashed[*] Functions, the following applies:

• They behave like their corresponding
(without “_dashed” in the name)
non-[*]dashed[*] Functions

• They provide additionally 2 arguments each for
switching the laser. These behave the same with
all [*]dashed[*] Functions:

• NSwitches
• LaserSwitches

• NSwitches is the size of the LaserSwitches array. It
specifies how often the laser is to be switched
on/off along the marking pattern section.
Minimum value: 1.

• LaserSwitches is an array of double values. The array
specifies at which arc length values (in mm) a
switching of “Laser Standby” Operation and
“Laser Active” Operation has to occur.
The first switching:

– Is defined to be a switch to “Laser Active” Oper-
ation
• Is allowed for an arc length of 0.0 mm, that

is, the laser is switched on immediately at the
start of the marking pattern section

The LaserSwitches values must meet the following
requirements:

• Ascending order
•  0.0
•  Total arc length of the marking pattern sec-

tion
• Duration of “Laser Standby” Operation(1):
 [LaserMinOffTime + LaserPreTriggerTime]

• Time between two switchings s of similar
type(2):
 1 µs

• If one of the above requirements is not met, the
return values of the calling
[*]dashed[*] Functions indicate that Bit #06 is set
(UnplausibleOrUnknownParameter).

• Important: Regardless of the currently set
BlendMode, marking pattern sections defined by
[*]dashed[*] Functions are never part of a
blending curve.

Notes

• Marking patterns suitable for
[*]dashed[*] Functions could alternatively be
achieved by a sequence of short Mark functions
and Jump commanden.

• However, there is a risk that the calculation time
will increase significantly. The reason for this
would be the geometrical calculations (see
Figure 11), which have to be performed for each
of these Mark functions and Jump commands
separately. Their calculation durations are
independent of the spatial extension of the
marking pattern sections. In contrast, with
[*]dashed[*] Functions, these calculations are
performed only 1×, independent of the specified
NSwitches value.

• In contrast, sequences of Mark functions and
Jump commands:
– Are suitable if the laser is to be switched on/off

only relatively infrequently
– Even must be used, if blending curves are

desired

(1) The time differences result from the specified
arc lengths and the marking speed.

(2) “Laser Standby” Operation -> “Laser Standby”
Operation
“Laser Active” Operation -> “Laser Active” Operation

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

92

innovators for industry

Functions for Changing Target Point
Coordinates

• slsc_list_set_matrix_and_offset

• slsc_list_set_rot_and_offset_2d

To be able to change target point coordinates (see
page 268) of subsequent slsc_list_arc_abs,
slsc_list_circle_2d_abs, slsc_list_jump_abs,
slsc_list_mark_abs and their corresponding
slsc_list_[para/multi_para]* functions as of the
insert position only until the end of the current Job,
slsc_list_set_rot_and_offset_2d and
slsc_list_set_matrix_and_offset are available. With
slsc_list_set_rot_and_offset_2d an angle and
offset value can be specified, with
slsc_list_set_matrix_and_offset a transformation
matrix and an offset value. For both there are corre-
sponding Configuration functions (slsc_cfg_*) which
are slsc_cfg_set_rot_and_offset_2d and
slsc_cfg_set_matrix_and_offset.

The transformation matrix to be specified with
slsc_list_set_matrix_and_offset/slsc_cfg_set_matr
ix_and_offset can, for example, be used for rotating
(mathematically positive direction of rotation, that is,
positive angles produce counterclockwise rotation),
scaling, or flipping marking results. Some examples
are shown in the following table.

Functions for Defining Ramps
(slsc_list_[para/multi_para]*-Functions)

• slsc_list_multi_para_arc_abs

• slsc_list_multi_para_circle_2d_abs

• slsc_list_multi_para_dashed_arc_abs(1)

• slsc_list_multi_para_dashed_circle_2d_abs(1)

• slsc_list_multi_para_dashed_mark_abs(1)

• slsc_list_multi_para_mark_abs

• slsc_list_para_arc_abs

• slsc_list_para_circle_2d_abs

• slsc_list_para_dashed_arc_abs(1)

• slsc_list_para_dashed_circle_2d_abs(1)

• slsc_list_para_dashed_mark_abs(1)

• slsc_list_para_disable

• slsc_list_para_enable

• slsc_list_para_jump_abs

• slsc_list_para_jump_abs_min_time

• slsc_list_para_mark_abs

slsc_list_para* functions (slsc_list_para_arc_abs,
slsc_list_para_circle_2d_abs,
slsc_list_para_jump_abs,
slsc_list_para_jump_abs_min_time,
slsc_list_para_mark_abs) offer the argument
ParaTarget additionally (compared to their corre-
sponding slsc_list* functions slsc_list_arc_abs,
slsc_list_circle_2d_abs, slsc_list_jump_abs,
slsc_list_jump_abs_min_time, slsc_list_mark_abs
). By ParaTarget, a (simple) Ramp is defined (in the
working field, the value/s of one/two
“ActiveChannel” is/are varied linearly). In order that
the argument ParaTarget is being evaluated,
slsc_list_para_enable must have been called before.
Otherwise, slsc_list_para* functions work as their
corresponding slsc_list* functions.

Each slsc_list_para* function works as its corre-
sponding slsc_list* function, if no “ActiveChannel”
has been entered, see Section ”About Automatically
Controlling the Laser by syncAXIS control
(“Automatic Laser Control“)”, page 48, or
slsc_list_para_disable has been called before.

Rotation by the angle 

Scaling by the factors kX and kY

Mirroring around the y axis
(flipping in the x direction)

cos sin–

sin cos

kX 0

0 kY

1– 0
0 1

(1) See Section ”[*]dashed[*] Functions”, page 91.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

93

innovators for industry

slsc_list_multi_para* functions
(slsc_list_multi_para_arc_abs,
slsc_list_multi_para_circle_2d_abs,
slsc_list_multi_para_mark_abs) additionally offer
the argument MultiParaTarget (compared to their
corresponding slsc_list* functions slsc_list_arc_abs,
slsc_list_circle_2d_abs, slsc_list_mark_abs).
By MultiParaTarget, a Ramp (per “ActiveChannel”) can
be defined which consist of several sections, which
makes it also possible to define sawtooth- or square-
shaped Ramps, see also Section ”About Ramps”,
page 53.

For the argument MultiParaTarget to be evaluated,
slsc_list_para_enable must have been called before.
Otherwise, slsc_list_multi_para* functions work as
their corresponding slsc_list* functions.

Each slsc_list_multi_para* function works as its
corresponding slsc_list* function, if no
“ActiveChannel” has been defined, see Section
”About Automatically Controlling the Laser by
syncAXIS control (“Automatic Laser Control“)”,
page 48, or slsc_list_para_disable has been called
before.

Functions for Setting Signals

• slsc_list_write_analog_x

• slsc_list_write_digital_out

• slsc_list_write_digital_out_mask

With these functions, the signals are set at the spec-
ified output ports in between two Job functions
(slsc_list_; referring to the marking result in the
image field), see also Chapter 2.7.2 ”About the Point
in Time when Output Signals are actually set”,
page 45. They remain set beyond the Job end.

The most recently set signals are still outputted, even
if the syncAXIS control instance is deleted by
slsc_cfg_delete.

Functions for Changing Speeds

• slsc_list_set_jump_speed

• slsc_list_set_mark_speed

A change by slsc_list_set_jump_speed and
slsc_list_set_mark_speed applies to all (as of the
insert position) following Job functions (slsc_list_*),
but only until the end of the currently running Job.

For both there are corresponding Configuration func-
tions (slsc_cfg_*) which are
slsc_cfg_set_jump_speed and
slsc_cfg_set_mark_speed.

Function for Changing Minimum Speeds

• slsc_list_set_min_mark_speed

A change by slsc_list_set_min_mark_speed applies
to all (as of the insert position) following
Job functions (slsc_list_*), but only until the end of
the currently running Job.

For slsc_list_set_min_mark_speed, there is no corre-
sponding Configuration function (slsc_cfg_*).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

94

innovators for industry

Functions for Changing Trajectory planning
Values

• slsc_list_set_calculation_dynamics_jump_scan_d
evice

• slsc_list_set_calculation_dynamics_mark_scan_d
evice

A change by these functions applies to all (as of the
insert position) following Job functions (slsc_list_*),
but only until the end of the currently running Job.

With these functions, the values for acceleration and
jerk used for planning trajectories(1) (for
Operation mode “ScannerOnly” as well as
“ScannerAndStage”) can be changed “locally” (= at a
specific point in the Job).

Possible application scenarios:

(1) Very high accuracy requirements are imposed on
the marking result. When optimizing, such a
“local” reduction of the scan head acceleration
can further improve the marking result because it
reduces the already low control error of the
scan head even more.

(2) For selective optimization of the
Motion decomposition, when:
– With the (Job-wide valid)

Motion decomposition settings
(= FilterBandwidth value,
DynamicReductionFunction value), a relatively good
result is already achieved overall

– However, in a few places the positioning stage
dynamic limits are still exceeded

In these few places,  V1.6 allows to specifically
reduce CalculationDynamics values (as a simple
workaround alternatively to changing the
Motion decomposition parameter values again,
see above).

As a fix (with  V1.6), CalculationDynamics values(2)
can be specifically reduced in these few places
(instead of having to change the
Motion decomposition settings, see above).

Functions for Changing the Behavior of
Blending Curves

• slsc_list_set_approx_blend_limit

By slsc_list_set_approx_blend_limit, the
ApproxBlendLimit value can be changed, see also
Figure 39, page 292 in slsc_GeometryConfig.

A change by slsc_list_set_approx_blend_limit
applies to all (as of the insert position) following
Job functions (slsc_list_*), but only until the end of
the currently running Job.

Function for the “Contour-dependent Speed
Calculation“

• slsc_list_set_contour_dependent_speed_control
_2d

The “Contour-dependent speed calculation“ can be
switched on and off as well as changed by
slsc_list_set_contour_dependent_speed_control_
2d. For prerequisites and further information, see
Chapter 2.9.5 ”About the “Contour-dependent
speed calculation“”, page 60.

A change by
slsc_list_set_contour_dependent_speed_control_
2d applies to all (as of the insert position) following
Job functions (slsc_list_*), but only until the end of
the currently running Job.

For
slsc_list_set_contour_dependent_speed_control_
2d there is the corresponding Configuration function
(slsc_cfg_*)
slsc_cfg_set_contour_dependent_speed_control_
2d.

(1) See Trajectory, page 15.

(2) <cfg:Configuration>  <cfg:ScanDeviceConfig> 
<cfg:CalculationDynamics>

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

95

innovators for industry

Function for Setting the Value of a Free
Variable on the RTC6

• slsc_list_set_free_variable

See Section ”Functions for Managing the Value of a
Free Variable on the RTC6”, page 99.

Function for Influencing the Laser Pulse
Output by HalfPeriod/PulseLength

• slsc_list_set_laser_pulses

See Section ”Function for Influencing the Laser Pulse
Output by HalfPeriod/PulseLength”, page 100.

Functions for “Modules”

• slsc_list_begin_module

• slsc_list_para_playback_module

• slsc_list_playback_module

See Chapter 2.11 ”About Working with “Modules””,
page 65.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

96

innovators for industry

3.1.3 Control Functions (slsc_ctrl_*)

Control functions (prefix slsc_ctrl_) serve to control
the user program flow. These functions primarily
serve the purpose of controlling the user program
flow:

• To release/not release laser signals

• To query whether the syncAXIS-DLL-internal
Input buffer has free capacity

• To query the execution state of the RTC6 board

• To query errors

• To query measured signals

• To start and to cancel a Job execution

For a graphical overview, see Figure 37, page 98.

Notes

• Control functions are technically totally different
than “RTC control commands” which are
described in the RTC6 Manual. Therefore, they are
not designated as such in this document. Among
other things, the syncAXIS control instance
ensures that a Control function may/can be
actually executed.

• Control functions (slsc_ctrl_*) are always
accepted, if the operation status is “green” (see
slsc_cfg_get_operation_status).

• Some Control functions (slsc_ctrl_*) have
Operation mode (slsc_OperationMode) restric-
tions, see Figure 37, page 98.

Laser-related Functions

• slsc_ctrl_disable_laser

• slsc_ctrl_enable_laser

Among other things, slsc_cfg_initialize_from_file
activates (arms) the laser control on the RTC6 board
(internally the RTC6 control command
set_laser_control is used for this purpose).
Furthermore, slsc_cfg_initialize_from_file automat-
ically executes slsc_ctrl_enable_laser among other
things. That is, the laser control signals(1) LASERON,
LASER1 and LASER2 are already actually outputted on
the RTC6 board. This output can be inhibited by
slsc_ctrl_disable_laser.

Warning!
Risk of injury due to laser radiation!
slsc_cfg_initialize_from_file can lead to
undefined states of the RTC6 board(s) in which
the laser could be switched on unexpectedly!
Make sure that the laser is switched off before
calling slsc_cfg_initialize_from_file!

Caution!
Make sure that laser safety is ensured in the
entire system. In the safety concept of your
system control, take into account that the RTC
laser control signals are enabled by
slsc_cfg_initialize_from_file and
slsc_ctrl_enable_laser.

(1) See RTC6 Manual.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

97

innovators for industry

Execution-related Functions

To check whether the syncAXIS-DLL Input buffer is
full and, therefore, cannot accept an additional
Job function at the moment:

• slsc_ctrl_is_list_input_buffer_full

To query the execution status(1) of the RTC6:

• slsc_ctrl_get_exec_state

To start and to cancel a Job:

• slsc_ctrl_start_execution

• slsc_ctrl_stop_controlled or slsc_ctrl_stop, see
Section ”Comparison of slsc_ctrl_stop_controlled
and slsc_ctrl_stop”, page 97

Comparison of slsc_ctrl_stop_controlled and
slsc_ctrl_stop

(1) slsc_ExecState_Idle,
slsc_ExecState_ReadyForExecution,
slsc_ExecState_Executing,
slsc_ExecState_NotInitOrError.

Caution!
Make sure that laser safety is ensured in the
entire system. In the safety concept of your
system control, take into account that the laser
in on during Job execution.

Caution!
A moving positioning stage poses mechanical
hazards. There are risks of injuries to fingers and
hands from crushing.
In the safety concept of your system control,
take into account that
slsc_ctrl_start_execution can move the
positioning stage (possibly with a certain delay).
Make sure that all bystanders keep sufficient
distance to the appliance during execution.

slsc_ctrl_stop_controlled slsc_ctrl_stop

With compensation
movement for deceler-
ation

“Emergency stop”

Does not ensure the
fastest possible standstill
of the system, but main-
tains all specified dynamic
limits

• Immediately turns
off the laser

• Brings mirrors and
positioning stage
to a standstill as
quickly as possible

• Wear may occur
with frequent use

Subsequently, the
syncAXIS control instance
must be re-initialized

Subsequently, the
syncAXIS control insta
nce must be re-
initialized

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

98

innovators for industry

37
Control functions (slsc_ctrl_*): graphical overview.

To query the state of the Input buffer
slsc_ctrl_is_list_input_buffer_full(*)

To query the status of the Job execution
slsc_ctrl_get_exec_state(*)

To query errors
slsc_ctrl_get_error(*)
slsc_ctrl_get_error_count(*)

To query measured signals
slsc_ctrl_get_value(*)

To change the laser signal output
yes: slsc_ctrl_enable_laser(*)
no: slsc_ctrl_disable_laser(*)

To use another correction file
slsc_ctrl_get_job_characteristic(*)

syncAXIS control instance:
Is running

Job execution
To start:
slsc_ctrl_start_execution(**)
To cancel:
slsc_ctrl_stop_controlled(*)
slsc_ctrl_stop(*)

For a Job-ID: to return the value of a Job
characteristic which has been calculated by
the Trajectory planning
slsc_ctrl_get_job_characteristic(*)

To immediately position the galvanometer scanners
slsc_ctrl_move_scanner_abs(***)

To immediately position the positioning stage
slsc_ctrl_move_stage_abs(***)

To immediately switch the laser on/off
On: slsc_ctrl_laser_signal_off(***)
Off: slsc_ctrl_laser_signal_on(***)

To immediately send 1 correction file to the RTC6
slsc_ctrl_refresh_correction_file(*)

(*) This function is allowed in all Operation modes (see slsc_OperationMode).
(**) This function is not allowed in Mode “Manual Positioning“.
(***) This function is only allowed in Mode “Manual Positioning“.

Only in Jobs started by slsc_list_begin_absolute!
To immediately release positioning stage:
slsc_ctrl_unfollow(*)
To immediately reacquire positioning stage:
slsc_ctrl_follow(*)

To query set/actual position of
positioning stage: slsc_ctrl_get_stage_position(*)
scan device: slsc_ctrl_get_scan_device_position(*)

Value of a free variable on the RTC6
To set:
slsc_ctrl_set_free_variable(*)
To query:
slsc_ctrl_get_free_variable(*)

Only in simulation mode!
slsc_ctrl_get_syncaxis_simulation_filena
me(*)
To query a simulation file name.

To set signals
At analog output port
slsc_ctrl_write_analog_x(***)

At digital output port
slsc_ctrl_write_digital_out(***)
slsc_ctrl_write_digital_out_mask(***) (per bit mask)

To influence laser pulse output by
HalfPeriod/PulseLength
slsc_ctrl_set_laser_pulses

Control Functions (slsc_ctrl_*)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

99

innovators for industry

Correction File-related Functions

• slsc_ctrl_refresh_correction_file

• slsc_ctrl_select_correction_file

In a syncAXISConfig.xml for syncAXIS control  V1.1.0,
up to 4 correction files can be entered(1). Upon
creating the syncAXIS control instance these are
transferred to the RTC6 and saved there.

By slsc_ctrl_select_correction_file it can be set (by
specifying the corresponding index 0…3 of the
desired correction file) which of these correction files
is to be immediately used (for example, after having
switched to another positioning stage-scan head
combination which is now to be used for marking).
So slsc_ctrl_select_correction_file selects (similar to
the RTC6 command select_cor_table) a
correction file which is already present on the RTC6.

In contrast, slsc_ctrl_refresh_correction_file
(similar to the RTC6 command load_correction_file)
immediately transfers a correction file to the RTC6
(the corresponding index 0…3 is to be specified, as
with slsc_ctrl_select_correction_file). Example of an
application scenario: a syncAXIS control instance is
running which means that the correction files spec-
ified in syncAXISConfig.xml are saved on the RTC6. The
user now generates an optimized correction file for
the laser scan system and overwrites the corre-
sponding correction file which is currently in use (in
the file system). By slsc_ctrl_refresh_correction_file
(without the need to destroy/recreate the
syncAXIS control instance), the optimized
correction file is then sent to the RTC6.

Error-related Functions

• slsc_ctrl_get_error

• slsc_ctrl_get_error_count

First of all, the number n of present errors must be
determined by slsc_ctrl_get_error_count. Then a
meaningful value for ErrorNr can be specified with
slsc_ctrl_get_error in order to query details about
the respective error. The first occurred error is the
oldest detected error. It has the number 0.

Functions for Querying Measured Values

• slsc_ctrl_get_value

By slsc_ctrl_get_value a broad range of measured
signals related to the 4 axes can be queried for the
purpose of diagnosis and monitoring.

Functions Only for Mode “Manual
Positioning“

• slsc_ctrl_laser_signal_off

• slsc_ctrl_laser_signal_on

• slsc_ctrl_move_scanner_abs

• slsc_ctrl_move_stage_abs

See Chapter 2.12 ”About the Mode “Manual Posi-
tioning“”, page 70.

Functions for Managing the Value of a Free
Variable on the RTC6

• slsc_ctrl_get_free_variable

• slsc_ctrl_set_free_variable

The functions for free variables
slsc_ctrl_set_free_variable,
slsc_ctrl_get_free_variable as well as the supple-
mentary Job function (slsc_list)
slsc_list_set_free_variable each make the directly
corresponding RTC6 command available in
syncAXIS control. They can be used, for example, to
determine and count increments (within Jobs).
However, slsc_ctrl_get_free_variable,
slsc_ctrl_set_free_variable, as well as
slsc_list_set_free_variable have no effect in
simulation mode.

For further information on free variables, refer to the
RTC6 Manual, Chapter 6.9.1 ”Free Variables”,
page 134.

(1) syncAXIS_1_8.xsd allows up to 4 CorrectionFilePath as
child tags below CorrectionFileList.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

100

innovators for industry

Functions for Optimizing Parameter Values

• slsc_ctrl_get_job_characteristic

slsc_ctrl_get_job_characteristic is primarily
intended to evaluate the effect of parameter value
permutations (in simulation mode) by algorithms
(that is, automating parameter value optimization).

slsc_ctrl_get_job_characteristic returns – for a spec-
ified Job-ID – the value of one certain Job character-
istic (“Key“, see enum slsc_JobCharacteristic) which
has been calculated by the Trajectory planning. The
last 10 calculated Jobs (by Job-ID, see
slsc_list_begin) can be queried. To query all charac-
teristics of a Job, slsc_ctrl_get_job_characteristic
must be called correspondingly several times.

However, slsc_ctrl_get_job_characteristic requires
that the status of the specified Job-ID is at least
“Calculation: Finished” (see Figure 12, page 43).
Otherwise, the return value indicates that Bit #06 is
set (UnplausibleOrUnknownParameter). Therefore, with
short Job-IDs (not quantifiable more precisely),
slsc_ctrl_get_job_characteristic can also be used to
implement confirmation messages in a GUI, that is, if
the Trajectory planning calculation results (for
example, max control values for the positioning
stage) exceed defined limits (for example, “…do you
really want to execute Job…”).

Functions for Starting/Ending the Mode
“Manual Positioning“

• slsc_ctrl_follow

• slsc_ctrl_unfollow

See Chapter 2.12 ”About the Mode “Manual Posi-
tioning“”, page 70.

Functions for Querying Positions

• slsc_ctrl_get_scan_device_position

• slsc_ctrl_get_stage_position

slsc_ctrl_get_scan_device_position returns the set
position or actual position of the specified
scan device. slsc_ctrl_get_stage_position does the
same for the positioning stage.

Simulation Setting-related Function

• slsc_ctrl_get_syncaxis_simulation_filename

slsc_ctrl_get_syncaxis_simulation_filename
replaces slsc_ctrl_get_simulation_filename
because simulation files in V1.3 are no longer
generated scan device-specific.
slsc_ctrl_get_syncaxis_simulation_filename
requires the simulation mode. This function can be
used to determine the simulation file name (for a
specific Job-ID). This facilitates the realization of
user programs that automatically import
simulation files (for example, to evaluate or graphi-
cally display them).

Functions for Setting Signals

• slsc_ctrl_write_analog_x

• slsc_ctrl_write_digital_out

• slsc_ctrl_write_digital_out_mask

These functions are only allowed in Mode “Manual
Positioning“. They are not accepted, when a Job is
currently being executed. Each of these functions is
always sent to all RTC6 boards and the signals are set
promptly.

The most recently set signals are still outputted, even
if the syncAXIS control instance is deleted by
slsc_cfg_delete.

Function for Influencing the Laser Pulse
Output by HalfPeriod/PulseLength

• slsc_ctrl_set_laser_pulses

slsc_ctrl_set_laser_pulses and
slsc_list_set_laser_pulses are provided for those
Sky Writings who (due to the laser they use) cannot
use the “Automatic Laser Control“ to achieve equi-
distant spot distances and instead want to influence
the pulse output via HalfPeriod and PulseLength.

However, slsc_ctrl_set_laser_pulses as well as
slsc_list_set_laser_pulses have no effect in
simulation mode.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

101

innovators for industry

3.1.4 Utility Functions (slsc_util_*)

Utility Functions (prefix slsc_util_)(1)(2) essentially
replace external utility programs and must meet
certain preconditions. They must not be called during
the regular syncAXIS control operation.
For a graphical overview, see Figure 38, page 101.

RTC6 board-related Function

• slsc_util_reset_pcie

Apart from the preceding safety notice, make sure
that no syncAXIS control instance is running before
slsc_util_reset_pcie is called. slsc_util_reset_pcie is
a “hard” reset function, which can be used if one of
the RTC6 PCI Express Boards is in a state that users
perceive as “strange”(3).

(1) Available in syncAXIS control  V1.3.0.

(2) To date (V1.3.0), only one.

Warning!
Risk of injury due to laser radiation!
slsc_util_reset_pcie can lead to undefined
states of the RTC6 board(s) in which the laser
could be switched on unexpectedly! Make sure
that the laser is switched off before calling
slsc_util_reset_pcie!

(3) In this situation it is not advisable to use iSCANcfg.exe,
because mostly RTC6 files are loaded which do not
originate from the syncAXIS control-software package
which results in unpredictable side effects.

38
Utility Functions (slsc_util_*): graphical overview.

syncAXIS control instance:
Is NOT running

“Hard” reset of
RTC6 PCI Express Boards:

slsc_util_reset_pcie

Utility Functions (slsc_util_*)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

102

innovators for industry

3.2 Alphabetical Overview

In this Chapter:

• Configuration Functions (slsc_cfg_*), page 102

• Control Functions (slsc_ctrl_*), page 107

• Job Functions (slsc_list_*), page 109

• Utility Functions (slsc_util_*), page 113

Configuration Functions (slsc_cfg_*) Purpose

slsc_cfg_acquire_stage (deprecated) Deprecated.

slsc_cfg_delete Destroys the specified syncAXIS control instance. In the
process, the resources (RTC6 board, positioning stage, …) are
released.

slsc_cfg_delete_trajectory_config Auxiliary function for software development: deletes the
trajectory configuration object (in order to avoid memory
leaks), see Code example.

slsc_cfg_get_calculation_dynamics_stage Returns the current setting of the specified
syncAXIS control instance for: The maximum dynamic capabi-
lities (“dynamic limits“) of the intended positioning stage type.
The values are used only in Trajectory planning calculations of
the positioning stage motion.

slsc_cfg_get_dynamic_limits_scan_device Returns the current setting of the specified
syncAXIS control instance for: The maximum dynamic capabi-
lities (“dynamic limits“) of the intended scan device type.

slsc_cfg_get_dynamic_limits_stage Returns the current setting of the specified
syncAXIS control instance for: The dynamic limits of the
intended positioning stage type.

slsc_cfg_get_dynamic_violation_reaction Returns the current setting of the specified
syncAXIS control instance for: The reaction when a limit value
exceedance occurs.

slsc_cfg_get_field_limits_scan_device Returns the current setting of the specified
syncAXIS control instance for: The working field limits of the
intended scan device type.

slsc_cfg_get_field_limits_stage Returns the current setting of the specified
syncAXIS control instance for: The working field limits of the
intended positioning stage type.

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

103

innovators for industry

slsc_cfg_get_calculation_dynamics_jump_scan_device Returns the current setting of the specified
syncAXIS control instance for: The maximum acceleration and
jerk value of the intended scan device type. The values are used
only in Trajectory planning calculations of the scan device
motion – however, only for jumps but not markings.

slsc_cfg_get_calculation_dynamics_mark_scan_device Returns the current setting of the specified
syncAXIS control instance for: The maximum acceleration and
jerk value of the intended scan device type. The values are used
only in Trajectory planning calculations of the scan device
motion – however, only for markings but not jumps.

slsc_cfg_get_jump_time Calculates the duration of a jump (outside “regular” Job):

• Based on the current setting of the specified
syncAXIS control instance and

• Depending on the specified values for start dynamic and
end dynamic

slsc_cfg_get_mode Returns the current setting of the specified
syncAXIS control instance for: The Operation mode
(ScannerOnly, StageOnly, ScannerAndStage).

slsc_cfg_get_operation_status Returns the current setting of the specified
syncAXIS control instance for: The operation status (“traffic
light color”).

slsc_cfg_get_scan_device_dynamic_monitoring_level Returns the current setting of the specified
syncAXIS control instance for: The criterion for which the
scan devices are to be monitored (for
example, slsc_DynamicsMonitoringLevel_Velocity).

slsc_cfg_get_simulation_setting Returns the current setting of the specified
syncAXIS control instance for: The Simulation Setting.

slsc_cfg_get_stage_dynamic_monitoring_level Returns the current setting of the specified
syncAXIS control instance for: The criterion for which the
positioning stages are to be monitored (for
example, slsc_DynamicsMonitoringLevel_Velocity).

slsc_cfg_get_sync_axis_version Returns version info on the currently running syncAXIS-DLL.

slsc_cfg_get_trajectory_config Returns the current setting of the specified
syncAXIS control instance for: The Trajectory planning configu-
ration.

slsc_cfg_initialize_copy Initialization function: Creates a new
(target-)syncAXIS control instance in simulation mode with the
current configuration of the specified
(source-)syncAXIS control instance (in either hardware mode
or simulation mode) and assigns it a unique Handle value.

Configuration Functions (slsc_cfg_*) (cont’d.) Purpose (cont’d.)

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

104

innovators for industry

slsc_cfg_initialize_from_file Initialization function: Creates (by using the specified
XML configuration file) a new syncAXIS control instance and
assigns a unique Handle value to it.

slsc_cfg_register_callback_job_end_planned Sets up that the specified “Callback function” is called when a
“Callback event“ of type “job_end_planned” occurs.

slsc_cfg_register_callback_job_finished_executing Sets up that the specified “Callback function” is called when a
“Callback event“ of type “job_finished_executing” occurs.

slsc_cfg_register_callback_job_is_executing Sets up that the specified “Callback function” is called when a
“Callback event“ of type “job_is_executing” occurs.

slsc_cfg_register_callback_job_loaded_enough Sets up that the specified “Callback function” is called when a
“Callback event“ of type “job_loaded_enough” occurs.

slsc_cfg_register_callback_job_progress_planned Sets up that the specified “Callback function” is called when a
“Callback event“ of type “job_progress_planned” occurs.

slsc_cfg_register_callback_job_start_planned Sets up that the specified “Callback function” is called when a
“Callback event“ of type “job_start_planned” occurs.

slsc_cfg_reinitialize Initialization function: Destroys the specified (by the Handle)
syncAXIS control instance and creates it again (by using the
momentary configuration settings and values that have been
previously read out). In the process, the Handle value remains
unchanged.

slsc_cfg_reinitialize_from_file Initialization function: Destroys the specified (by the Handle)
syncAXIS control instance and creates it again (by using the
specified syncAXISConfig.xml). In the process, the Handle value
remains unchanged.

slsc_cfg_release_stage (deprecated) Deprecated.

slsc_cfg_select_heuristic For specifying the speed reduction characteristic
(DynamicReductionFunction).

slsc_cfg_select_stage For specifying the target positioning stage (“positioning stage
change”). As of syncAXIS-DLL  V1.2.0, slsc_cfg_select_stage
replaces slsc_cfg_select_stage_axis (deprecated).

slsc_cfg_select_stage_axis (deprecated) Deprecated.

slsc_cfg_set_bandwidth Changes the FilterBandwidth value of the specified
syncAXIS control instance.

Configuration Functions (slsc_cfg_*) (cont’d.) Purpose (cont’d.)

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

105

innovators for industry

slsc_cfg_set_calculation_dynamics_jump_scan_device Changes the setting of the specified syncAXIS control instance
for: The maximum acceleration and jerk value of the intended
scan device type. The values are used only in
Trajectory planning calculations of the scan device motion –
however, only for jumps but not markings.

slsc_cfg_set_calculation_dynamics_mark_scan_device Changes the setting of the specified syncAXIS control instance
for: The maximum acceleration and jerk value of the intended
scan device type. The values are used only in
Trajectory planning calculations of the scan device motion –
however, only for markings but not jumps.

slsc_cfg_set_calculation_dynamics_stage Changes the setting of the specified syncAXIS control instance
for: The maximum dynamic capabilities (“dynamic limits“) of
the intended positioning stage type. The values are used only
in Trajectory planning calculations of the positioning stage
motion.

slsc_cfg_set_contour_dependent_speed_control_2d Switch on/off the “Contour-dependent speed calculation“.
Furthermore, it is configured how the
syncAXIS control instance internally determines speeds along
curves (“left” or “right” of the curve mid-line; distance to it).
Once the “Automatic Laser Control“is activated, these results
are used to correspondingly set, for example, the laser spot
distances equidistant.

slsc_cfg_set_dynamic_limits_scan_device Changes the setting of the specified syncAXIS control instance
for: The maximum dynamic capabilities (“dynamic limits“) of
the intended scan device type.

slsc_cfg_set_dynamic_limits_stage Changes the setting of the specified syncAXIS control instance
for: The dynamic limits of the intended positioning stage type.

slsc_cfg_set_dynamic_violation_reaction Changes the setting of the specified syncAXIS control instance
for: The reaction when a limit value exceedance occurs.

slsc_cfg_set_field_limits_scan_device Changes the setting of the specified syncAXIS control instance
for: The working field limits of the intended scan device type.

slsc_cfg_set_field_limits_stage Changes the setting of the specified syncAXIS control instance
for: The working field limits of the intended positioning stage
type.

slsc_cfg_set_jump_speed Changes the setting of the specified syncAXIS control instance
for: The jump speed.

Configuration Functions (slsc_cfg_*) (cont’d.) Purpose (cont’d.)

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

106

innovators for industry

slsc_cfg_set_list_handling_mode Sets the handling and the return behavior of the Job functions
(slsc_list_*).

slsc_cfg_set_list_handling_mode_with_context Like slsc_cfg_set_list_handling_mode. But in addition, a
context can be specified. Sets the handling and the return
behavior of the Job functions (slsc_list_*).

slsc_cfg_set_mark_speed Changes the setting of the specified syncAXIS control instance
for: The marking speed.

slsc_cfg_set_matrix_and_offset Changes the setting of the specified syncAXIS control instance
for: Target point coordinates according to a transformation
matrix and an offset value.

slsc_cfg_set_mode Changes the setting of the specified syncAXIS control instance
for: The Operation mode (ScannerOnly, StageOnly,
ScannerAndStage).

slsc_cfg_set_part_displacement Applies a Matrix and an Offset to the set trajectory for the spec-
ified scan device (scan head). See Chapter 8.3 ”About Transfor-
mations in syncAXIS control V1.2.4 and Higher”, page 332.

slsc_cfg_set_rot_and_offset_2d Changes the setting of the specified syncAXIS control instance
for: Target point coordinates by an angle and an offset value.

slsc_cfg_set_scan_device_dynamic_monitoring_level Changes the setting of the specified syncAXIS control instance
for: The criterion for which the scan devices are to be moni-
tored (for example, slsc_DynamicsMonitoringLevel_Velocity).

slsc_cfg_set_simulation_setting Changes the setting of the specified syncAXIS control instance
for: The Simulation Setting.

slsc_cfg_set_stage_dynamic_monitoring_level Changes the setting of the specified syncAXIS control instance
for: The criterion for which the positioning stages are to be
monitored (for
example, slsc_DynamicsMonitoringLevel_Velocity).

slsc_cfg_set_trajectory_config Changes the setting of the specified syncAXIS control instance
for: The Trajectory planning configuration.

Configuration Functions (slsc_cfg_*) (cont’d.) Purpose (cont’d.)

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

107

innovators for industry

Control Functions (slsc_ctrl_*) Purpose

slsc_ctrl_disable_laser Inhibits that the laser control signals LASERON, LASER1 and
LASER2 (see RTC6 Manual) are outputted at the RTC6 board.

slsc_ctrl_enable_laser Releases the laser control signals LASERON, LASER1 and
LASER2 (see RTC6 Manual) at the RTC6 board.

slsc_ctrl_follow To re-acquire the positioning stage after a slsc_ctrl_unfollow.

slsc_ctrl_get_error Returns information on an error that occurred (error number
ErrorNr).

slsc_ctrl_get_error_count Returns the number of present errors.

slsc_ctrl_get_exec_state Returns the state of the Execution Layer.

slsc_ctrl_get_free_variable Returns the current value of a free variable of the RTC6.

slsc_ctrl_get_job_characteristic Returns – for a specified Job-ID – the value of a Job characte-
ristic (“Key“, see enum slsc_JobCharacteristic) which has been
calculated by the Trajectory planning.

slsc_ctrl_get_scan_device_position Returns the set position or actual position of the specified
scan device (scan head).

slsc_ctrl_get_simulation_filename Deprecated.

slsc_ctrl_get_stage_position Returns the set position or actual position of the positioning
stage.

slsc_ctrl_get_syncaxis_simulation_filename Only in simulation mode! Returns the corresponding
simulation file name for a specified Job-ID.

slsc_ctrl_get_value Returns the present value of the specified signals at the spec-
ified axis.

slsc_ctrl_is_list_input_buffer_full Checks whether the syncAXIS-DLL Input buffer is full (and
therefore, cannot accept an additional Job function (slsc_list_*)
at the moment).

slsc_ctrl_laser_signal_off Only in Mode “Manual Positioning“: Switches the laser off
immediately.

slsc_ctrl_laser_signal_on Only in Mode “Manual Positioning“: Switches the laser on
immediately.

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

108

innovators for industry

slsc_ctrl_move_scanner_abs Only in Mode “Manual Positioning“: Moves all scan devices to
the specified position with jump speed (starting from the
current position).

slsc_ctrl_move_stage_abs Only in Mode “Manual Positioning“: Moves the positioning
stage to the specified position with the dynamics (acceleration
and jerk) set by the ACS API (starting from the current position).

slsc_ctrl_refresh_correction_file Immediately transfers a correction file to the RTC6 board.

slsc_ctrl_select_correction_file To specify a correction file, which is to be used immediately.

slsc_ctrl_set_free_variable Sets the value of a free variable on the RTC6.

slsc_ctrl_set_laser_pulses Defines the output period and the pulse lengths for the laser
signals LASER1 and LASER2 for “laser active” operation of the
RTC6 board.

slsc_ctrl_start_execution Tries to start the execution of a Job by the Execution Layer.

slsc_ctrl_stop Cancels the execution of the current Job uncontrolled and
immediately by a direct access to the RTC6 board
(“Emergency stop”).

slsc_ctrl_stop_controlled Cancels the execution of the current Job controlled and inserts
a compensation movement for deceleration.

slsc_ctrl_unfollow The specified syncAXIS control instance temporarily releases
the positioning stage. Then, it can be controlled externally (for
example, by a non-syncAXIS control-based user program).

slsc_ctrl_write_analog_x Only in Mode “Manual Positioning“: Writes a output value to
the 12-Bit-analog output port ANALOG OUT1 or
ANALOG OUT2 of all RTC6 boards.

slsc_ctrl_write_digital_out Only in Mode “Manual Positioning“: Writes a 16-bit output
value to the 16-bit digital output port
DIGITAL OUT 0…DIGITAL OUT 15 of all RTC6 boards.

slsc_ctrl_write_digital_out_mask Only in Mode “Manual Positioning“! Writes only those bits of
the Value-values to the 16-bit digital output port of all
RTC6 boards, which are specified in the user-defined bit mask
(Mask parameter).

Control Functions (slsc_ctrl_*) (cont’d.) Purpose (cont’d.)

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

109

innovators for industry

Job Functions (slsc_list_*) Purpose

slsc_list_arc_abs Defines a to-be-marked circular arc (not: elliptical arc) by
absolute coordinate values.

slsc_list_begin Defines the beginning of a Job. Is 1 of 2 mandatory structure
elements of a Job.

slsc_list_begin_absolute Defines (alternatively to slsc_list_begin, slsc_list_begin_relative)
the beginning of a Job to compensate a position change
(performed in Mode “Manual Positioning“) of the positioning
stage caused by slsc_ctrl_move_stage_abs. Important:
slsc_list_begin_absolute may cause the user program to crash
when starting Jobs, if the end position of the preceding Job and
the position specified with slsc_list_begin_absolute do not
match!

slsc_list_begin_module Only allowed in simulation mode. To “precalculate a Job”.
Defines the beginning of a to-be-recorded Job (Module) which
is closed as usual by slsc_list_end.

slsc_list_begin_relative Defines (alternatively to slsc_list_begin) the beginning of a Job.
Is 1 of 2 mandatory structure elements of a Job.

slsc_list_circle_2d_abs Defines a circle (not: ellipse) by the absolute coordinate value
of the circle center. The parameter Angle determines the
marking direction as well as the number of rotations (for
example, 3,25 × 2).

slsc_list_dashed_arc_abs Like slsc_list_arc_abs, but the corresponding
[*]dashed[*] Function. Therefore, offers the arguments
NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

slsc_list_dashed_circle_2d_abs Like slsc_list_circle_2d_abs, but the corresponding
[*]dashed[*] Function. Therefore, offers the arguments
NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

slsc_list_dashed_mark_abs Like slsc_list_mark_abs, but the corresponding
[*]dashed[*] Function. Therefore, offers the arguments
NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

slsc_list_end Defines the end of a Job. Is 1 of 2 mandatory structure elements
of a Job.

slsc_list_jump_abs Defines a jump by absolute coordinate values.

slsc_list_jump_abs_min_time Like slsc_list_jump_abs. But additionally allows to specify a
minimum duration for the jump.

slsc_list_mark_abs Defines a mark vector by absolute coordinate values.

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

110

innovators for industry

slsc_list_multi_para_arc_abs Like slsc_list_arc_abs. But offers the argument MultiParaTarget
additionally, by which (per “ActiveChannel”) a Ramp consisting
of several sections is defined.

slsc_list_multi_para_circle_2d_abs Like slsc_list_circle_2d_abs. But offers the argument
MultiParaTarget additionally, by which (per “ActiveChannel”) a
Ramp consisting of several sections is defined.

slsc_list_multi_para_dashed_arc_abs Like slsc_list_multi_para_arc_abs, but the corresponding
[*]dashed[*] Function. Therefore, offers the arguments
NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

slsc_list_multi_para_dashed_circle_2d_abs Like slsc_list_multi_para_circle_2d_abs, but the corresponding
[*]dashed[*] Function. Therefore, offers the arguments
NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

slsc_list_multi_para_dashed_mark_abs Like slsc_list_multi_para_mark_abs, but the corresponding
[*]dashed[*] Function. Therefore, offers the arguments
NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

slsc_list_multi_para_mark_abs Like slsc_list_mark_abs. But offers the argument
MultiParaTarget additionally, by which (per “ActiveChannel”) a
Ramp consisting of several sections is defined.

slsc_list_para_arc_abs Like slsc_list_arc_abs. But offers the argument ParaTarget addi-
tionally, by which a Ramp is defined (in the working field, the
value/s of one/two “ActiveChannel” is/are varied linearly).

slsc_list_para_circle_2d_abs Like slsc_list_circle_2d_abs. But offers the argument ParaTarget
additionally, by which a Ramp is defined (in the working field,
the value/s of one/two “ActiveChannel” is/are varied linearly).

slsc_list_para_dashed_arc_abs Like slsc_list_para_arc_abs, but the corresponding
[*]dashed[*] Function. Therefore, offers the arguments
NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

slsc_list_para_dashed_circle_2d_abs Like slsc_list_para_circle_2d_abs, but the corresponding
[*]dashed[*] Function. Therefore, offers the arguments
NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

slsc_list_para_dashed_mark_abs Like slsc_list_para_dashed_mark_abs, but the corresponding
[*]dashed[*] Function. Therefore, offers the arguments
NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

Job Functions (slsc_list_*) (cont’d.) Purpose (cont’d.)

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

111

innovators for industry

slsc_list_para_disable Switches the processing of the arguments ParaTarget (of
slsc_list_para* functions) and MultiParaTarget (of
slsc_list_multi_para* functions) off.

slsc_list_para_enable Switches the processing of the arguments ParaTarget (of
slsc_list_para* functions) and MultiParaTarget (of
slsc_list_multi_para* functions) on.

slsc_list_para_jump_abs Like slsc_list_jump_abs. But offers the argument ParaTarget
additionally, by which a Ramp is defined (in the working field,
the value/s of one/two “ActiveChannel” is/are varied linearly).

slsc_list_para_jump_abs_min_time Like slsc_list_jump_abs_min_time. But offers the argument
ParaTarget additionally, by which a Ramp is defined (in the
working field, the value/s of one/two “ActiveChannel” is/are
varied linearly).

slsc_list_para_mark_abs Like slsc_list_jump_abs_min_time. But offers the argument
ParaTarget additionally, by which a Ramp is defined (in the
working field, the value/s of one/two “ActiveChannel” is/are
varied linearly).

slsc_list_para_playback_module Like slsc_list_mark_abs. But offers the argument ParaTarget
additionally, by which a Ramp is defined (in the working field,
the value/s of one/two “ActiveChannel” is/are varied linearly).

slsc_list_playback_module Like slsc_list_playback_module, however, parameter values on
Ramps are applied, if there is a slsc_list_para_enable in
advance.

slsc_list_set_approx_blend_limit Changes the ApproxBlendLimit value, which is specified in the
configuration of the Trajectory planning (see below). This
change applies to all following Job functions (slsc_list_*) but
only until the end of the Job.

slsc_list_set_calculation_dynamics_jump_scan_device Changes: The maximum acceleration and jerk value of the
intended scan device type. The values are used only in
Trajectory planning calculations of the scan device motion –
however, only for jumps but not markings

slsc_list_set_calculation_dynamics_mark_scan_device Changes: The maximum acceleration and jerk value of the
intended scan device type. The values are used only in
Trajectory planning calculations of the scan device motion –
however, only for markings but not jumps.

Job Functions (slsc_list_*) (cont’d.) Purpose (cont’d.)

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

112

innovators for industry

slsc_list_set_contour_dependent_speed_control_2d Switches on/off the “Contour-dependent speed calculation“.
Furthermore, it can be changed how the
syncAXIS control instance internally determines speeds along
curves (“left” or “right” of the curve mid-line; distance to it).
Once the “Automatic Laser Control“is activated, these results
are used to correspondingly set, for example, the laser spot
distances equidistant. This change applies to all following
Job functions (slsc_list_*) but only until the end of the Job.

slsc_list_set_free_variable Like slsc_ctrl_set_free_variable.

slsc_list_set_jump_speed Changes the jump speed. This change applies to all following
Job functions (slsc_list_*) but only until the end of the Job.

slsc_list_set_laser_on_move Delays the “Laser Active” Operation by exactly the amount of
time needed to travel the specified path length (PathLength) on
the current marking section. This change applies to all
following Job functions (slsc_list_*) but only until the end of
the Job.

slsc_list_set_laser_pulses Like slsc_ctrl_set_laser_pulses.

slsc_list_set_mark_speed Changes the marking speed. This change applies to all
following Job functions (slsc_list_*) but only until the end of
the Job.

slsc_list_set_matrix_and_offset Changes target point coordinates according to a transfor-
mation matrix and an offset value. This change applies to all
following Job functions (slsc_list_*) but only until the end of
the Job.

slsc_list_set_min_mark_speed Changes the minimal marking speed, see MinimalMarkSpeed.
This change applies to all following Job functions (slsc_list_*)
but only until the end of the Job.

slsc_list_set_rot_and_offset_2d Changes target point coordinates by an angle and an offset
value. This change applies to all following Job functions
(slsc_list_*) but only until the end of the Job.

slsc_list_suppress_spotdistance_control Only if “Automatic Laser Control“ is active with SpotDistance as
an “ActiveChannel”: supplementary function that must
precede slsc_list_wait_with_laser_on.

slsc_list_unsuppress_spotdistance_control Cancels the effect of slsc_list_suppress_spotdistance_control.

Job Functions (slsc_list_*) (cont’d.) Purpose (cont’d.)

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

113

innovators for industry

slsc_list_wait_with_laser_off Like slsc_list_wait_with_laser_on, but the laser is switched off.

slsc_list_wait_with_laser_on Defines a waiting time with which the laser spot is to wait at
the last defined target point with the laser switched on.

slsc_list_write_analog_x Writes a output value to the 12-Bit-analog output port
ANALOG OUT1 or ANALOG OUT2 of all RTC6 boards.

slsc_list_write_digital_out Writes a 16-bit output value to the 16-bit digital output port
DIGITAL OUT 0…DIGITAL OUT 15 of all RTC6 boards.

slsc_list_write_digital_out_mask Writes only those bits of the Value-values to the 16-bit digital
output port of all RTC6, which are specified in the user-defined
bit mask (Mask parameter).

Job Functions (slsc_list_*) (cont’d.) Purpose (cont’d.)

Alphabetical Overview, page 102

Utility Functions (slsc_util_*) Purpose

slsc_util_reset_pcie Carries out a “hard” reset of all found RTC6 PCI Express Boards.

Alphabetical Overview, page 102

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

114

innovators for industry

3.3 Function Reference

In this chapter:

• Chapter 3.3.1 ”General Structure of the
Reference Tables”, page 114

• Chapter 3.3.2 ”Data Types of the syncAXIS-DLL
Functions”, page 115

• Chapter 3.3.3 ”Reference Tables”, page 117

3.3.1 General Structure of the
Reference Tables

Name of the
function

prefix_name

The prefix indicates the category of the function:
slsc_cfg_ – Configuration function
slsc_ctrl_ – Control function
slsc_list_ – Job function

Purpose Short description describing the purpose of the function.

Function
signature

datatype prefix_name(datatype A, datatype* B, datatype C);

| | | | > Line Argument(s) C

| | | > Line Argument(s) B(a)

| | > Line Argument(s) A

| > Lines Name of the function, Purpose

> Line Return value

Example: uint32_t slsc_list_arc_abs(size_t Handle, const double* Mid, const double* Target);

Argument(s) A Data type.
Short text.

B Data type.
Short text.

C Data type.
Short text.

Return value Reference to a description of the return value, for example, “See Chapter 4 ”Standard Return Values of the
syncAXIS-DLL Functions”, page 279”.

Comment(s) • Additional information on this and similar functions.

• References to other chapters and publications.

Code example Exemplary source code snippet (not compilable).

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

Version info States the syncAXIS-DLL version in which the function has been published for the first time and, if applicable,
further information on changes.

References Links to related functions: prefix_name_2

(a) ’datatype*’ (address operator) indicates a pointer.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

115

innovators for industry

3.3.2 Data Types of the syncAXIS-DLL Functions

C programming language Data format

bool boolean value (true, false).

bool* Pointer to a boolean value (true, false).

char A presentable character of 1 byte = 8 bit.

char* Pointer to a null-terminated ANSI string, 1 byte per char.
4 Byte for Win32 executables.
8 Byte for Win64 executables.
Synonym: char array, C-string.

double 64-bit IEEE floating point format. See https://de.wikipedia.org/wiki/IEEE_754.

double* Pointer to a double value. double* can be an array also.

size_t As defined in stddef.h. In general, uint32_t for Win32 Executables.

size_t* Pointer to a size_t value.

slsc_ExecTimeCallback Auxiliary data type. Dictates the signature for (the to-be-supplied by the user)
the “Callback function”, which needs to be specified with:

• slsc_cfg_register_callback_job_end_planned

• slsc_cfg_register_callback_job_finished_executing

• slsc_cfg_register_callback_job_is_executing

• slsc_cfg_register_callback_job_progress_planned

Function signature:

typedef void(*slsc_ExecTimeCallback)(size_t JobID, uint64_t Progress, double
ExecTime, void* Context);

Argument(s):

Comment(s):

• slsc_ExecTimeCallback can be used, for example, as cast for function pointers
or as type for lambda functions.

JobID Job-ID.

Progress Reserved.

ExecTime Execution time of this Job-ID up to here in ms. This information
about the duration of planned or executed motions can be used
for process evaluation and optimization. Note that the measured
times will fluctuate because MS Windows is not a real time
system.

Context Pointer to the object which has been referenced in the respective
cfg_register_callback function.

https://de.wikipedia.org/wiki/IEEE_754

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

116

innovators for industry

Notes

• **
means pointer to a pointer, for example, with
slsc_cfg_get_trajectory_config.

• const
(for example, with const double* Target) means
that the value that follows is not changeable.
That is, after the function call the value is the
same as before the function call (unlike size_t*).
const is used to differentiate these values from
returned parameter values.

• void
means that the function does not deliver a
return value.

• void*
means a pointer to a generic data type.

slsc_JobCallback Auxiliary data type. Dictates the signature for (the to-be-supplied by the user)
the “Callback function”, which needs to be specified with:

• slsc_cfg_register_callback_job_loaded_enough

• slsc_cfg_register_callback_job_start_planned

Function signature:

typedef void (*slsc_JobCallback)(size_t JobID, void* Context);

Argument(s):

Comment(s):

• slsc_JobCallback can be used, for example, as cast for function pointers or
as type for lambda functions.

uint16_t Synonym: unsigned short. Unsigned 16-bit value: [0…+(216–1)].

uint32_t Synonym: unsigned int. Unsigned 32-bit value: [0…+(232–1)].

uint64_t Synonym: unsigned long long. Unsigned 64-bit value: [0…+(264–1)].

uint32_t* Pointer to a unsigned 32-bit value : [0…+(232–1)].

uint64_t* Pointer to a unsigned 64-bit value : [0…+(264–1)].

C programming language Data format

JobID Job-ID.

Context Pointer to the object which has been referenced in the respective
cfg_register_callback function.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

117

innovators for industry

3.3.3 Reference Tables

The sequence of the reference tables in this chapter
is alphabetically.

Name of the
function

slsc_cfg_acquire_stage (deprecated)

Purpose Deprecated.

Use slsc_ctrl_follow/slsc_ctrl_unfollow instead.
Resets the specified syncAXIS control instance (after slsc_cfg_release_stage
(deprecated)) to a fully functional state. RTC6 board and positioning stage are acquired
back again.

Function
signature

uint32_t slsc_cfg_acquire_stage (deprecated)(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Prior to slsc_cfg_acquire_stage (deprecated), slsc_cfg_release_stage (deprecated)
should have been called.

• slsc_cfg_acquire_stage (deprecated) resets the specified syncAXIS control instance
(after slsc_cfg_release_stage (deprecated)) to a fully functional state. In the process,
RTC6 board and positioning stage are acquired back again. As a consequence, the
syncAXIS control instance can be used without restrictions (see page 150) again
(= slsc_OperationStatus_Green).
The process is typically completed in less than 0.1 s.

• Prior to slsc_cfg_acquire_stage (deprecated), slsc_cfg_select_stage can be called in
order to specify a different positioning stage than the previous one. In this case,
slsc_cfg_acquire_stage (deprecated) acquires a different positioning stage than has
been released by slsc_cfg_release_stage (deprecated).

• See also Comment(s) of slsc_cfg_release_stage (deprecated), page 150.

• See also Chapter 2.12.2 ”Example – Temporarily Releasing the Positioning Stage and
Changing the Target Positioning Stage”, page 74.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example See slsc_cfg_release_stage (deprecated).

Version info Available as of syncAXIS-DLL V0.11.0. Deprecated as of syncAXIS-DLL V1.0.7.

References slsc_cfg_release_stage (deprecated)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

118

innovators for industry

Name of the
function

slsc_cfg_delete

Purpose Destroys the specified syncAXIS control instance. In the process, the resources
(RTC6 board, positioning stage, …) are released.

Function
signature

uint32_t slsc_cfg_delete(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_delete is not executed, if the specified Handle value does not exist. Then, the
return value indicates that Bit #02 is set (NotAllowedWithoutInitialization).

• slsc_cfg_delete also deletes the Handle value of the specified
syncAXIS control instance. This must be taken into account in particular if you are
managing Handle values in your user program (see comment in Code example at
slsc_cfg_initialize_from_file).

• During the destruction (see page 26 for the build-up) of a syncAXIS control instance in
hardware mode, the following processes take place:
– Scan head: is released. The scan head mirror position remains as is

(unchanged).
– RTC6: is released. The RTC6 laser control is no longer active.
– Positioning stage: is released. The positioning stage position remains as is

(unchanged).
– Output signals: the most recently set signals are continued to be outputted.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_cfg_initialize_from_file

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

119

innovators for industry

Name of the
function

slsc_cfg_delete_trajectory_config

Purpose Auxiliary function for software development: deletes the trajectory configuration object
(in order to avoid memory leaks), see Code example.

Function
signature

uint32_t slsc_cfg_delete_trajectory_config(slsc_TrajectoryConfig** TrajConfig);

Argument(s) TrajConfig See structure slsc_TrajectoryConfig.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_delete_trajectory_config does not change any configuration
parameter values.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
slsc_TrajectoryConfig* TrajConfig = 0;
// Handle: see Code example at slsc_cfg_initialize_from_file
// get configuration parameters
slsc_cfg_get_trajectory_config(Handle, &TrajConfig);
// change configuration parameters
TrajConfig->GeometryConfig.BlendMode = slsc_BlendModes::slsc_BlendModes_Deactivated;
slsc_cfg_set_trajectory_config(Handle, TrajConfig);
// delete configuration object slsc_TrajectoryConfig
// (does not change the configuration parameters)
slsc_cfg_delete_trajectory_config(&TrajConfig);

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_cfg_get_trajectory_config, slsc_cfg_set_trajectory_config

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

120

innovators for industry

Name of the
function

slsc_cfg_get_calculation_dynamics_jump_scan_device

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The maximum acceleration and jerk value of the intended scan device type. The values
are used only in Trajectory planning calculations of the scan device motion – however,
only for jumps but not markings

Function
signature

uint32_t slsc_cfg_get_calculation_dynamics_jump_scan_device(size_t Handle,
double* JumpAngularAcc, double* JumpAngularJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

JumpAngularAcc Like JumpAngularAcc.

JumpAngularJerk Like JumpAngularJerk.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Available to change the setting is:
– slsc_cfg_set_calculation_dynamics_jump_scan_device
– slsc_list_set_calculation_dynamics_jump_scan_device

• For slsc_cfg_get_calculation_dynamics_jump_scan_device, there is:
– A corresponding Job function (slsc_list_*)

slsc_list_set_calculation_dynamics_jump_scan_device
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.6.0.

References slsc_cfg_set_calculation_dynamics_jump_scan_device,
slsc_list_set_calculation_dynamics_jump_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

121

innovators for industry

Name of the
function

slsc_cfg_get_calculation_dynamics_mark_scan_device

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The maximum acceleration and jerk value of the intended scan device type. The values
are used only in Trajectory planning calculations of the scan device motion – however,
only for markings but not jumps

Function
signature

uint32_t slsc_cfg_get_calculation_dynamics_mark_scan_device(size_t Handle,
double* MarkAngularAcc, double* MarkAngularJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

MarkAngularAcc Like MarkAngularAcc.

MarkAngularJerk Like MarkAngularJerk.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Available to change the setting is:
– slsc_cfg_set_calculation_dynamics_mark_scan_device
– slsc_list_set_calculation_dynamics_mark_scan_device

• For slsc_cfg_get_calculation_dynamics_mark_scan_device, there is:
– A corresponding Job function (slsc_list_*)

slsc_list_set_calculation_dynamics_mark_scan_device
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.6.0.

References slsc_cfg_set_calculation_dynamics_mark_scan_device,
slsc_list_set_calculation_dynamics_mark_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

122

innovators for industry

Name of the
function

slsc_cfg_get_calculation_dynamics_stage

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The maximum dynamic capabilities (“dynamic limits“) of the intended positioning
stage type. The values are used only in Trajectory planning calculations of the
positioning stage motion

Function
signature

uint32_t slsc_cfg_get_calculation_dynamics_stage(size_t Handle, slsc_Stage Stage, double*
StageVel, double* StageAcc, double* StageJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

Stage Returned parameter value: pointer.
See enum slsc_Stage.

StageVel Like StageVel.

StageAcc Like StageAcc.

StageJerk Like StageJerk.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Available to change the setting is:
– slsc_cfg_set_calculation_dynamics_stage

• For slsc_cfg_get_calculation_dynamics_stage, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_set_calculation_dynamics_stage

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

123

innovators for industry

Name of the
function

slsc_cfg_get_dynamic_limits_scan_device

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The maximum dynamic capabilities (“dynamic limits“) of the intended scan device type

Function
signature

uint32_t slsc_cfg_get_dynamic_limits_scan_device(size_t Handle, double* AngularVel, double*
AngularAcc, double* AngularJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

AngularVel Like AngularVel.

AngularAcc Like AngularAcc.

AngularJerk Like AngularJerk.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Available to change the setting is:
– slsc_cfg_set_dynamic_limits_scan_device

• For slsc_cfg_get_dynamic_limits_scan_device, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_set_dynamic_limits_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

124

innovators for industry

Name of the
function

slsc_cfg_get_dynamic_limits_stage

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The dynamic limits of the intended positioning stage type

Function
signature

uint32_t slsc_cfg_get_dynamic_limits_stage(size_t Handle, slsc_Stage Stage, double* StageVel,
double* StageAcc, double* StageJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

Stage See enum slsc_Stage.

StageVel Like StageVel.

StageAcc Like StageAcc.

StageJerk Like StageJerk.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Available to change the setting is:
– slsc_cfg_set_dynamic_limits_stage

• For slsc_cfg_get_dynamic_limits_stage, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
double StageVel;
double StageAcc;
double StageJerk;
slsc_cfg_get_dynamic_limits_stage(Handle, slsc_Stage1, &StageVel, &StageAcc, &StageJerk);

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_set_dynamic_limits_stage

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

125

innovators for industry

Name of the
function

slsc_cfg_get_dynamic_violation_reaction

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The reaction when a limit value exceedance occurs

Function
signature

uint32_t slsc_cfg_get_dynamic_violation_reaction(size_t Handle, slsc_DynamicViolationReaction*
DynamicViolationReaction);

Argument(s) Handle Handle to a syncAXIS control instance.

DynamicViolationReaction Returned parameter value: pointer.
See enum slsc_DynamicViolationReaction.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Available to change the setting is:
– slsc_cfg_set_dynamic_violation_reaction

• For slsc_cfg_get_dynamic_violation_reaction, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
slsc_DynamicViolationReaction DynamicViolationReaction;
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_cfg_get_dynamic_violation_reaction(Handle, &DynamicViolationReaction);

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_set_dynamic_violation_reaction

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

126

innovators for industry

Name of the
function

slsc_cfg_get_field_limits_scan_device

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The working field limits of the intended scan device type

Function
signature

uint32_t slsc_cfg_get_field_limits_scan_device(size_t Handle, double* FieldLimitsMin, double*
FieldLimitsMax);

Argument(s) Handle Handle to a syncAXIS control instance.

FieldLimitsMin Like FieldLimitsMin.

FieldLimitsMax Like FieldLimitsMax.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Available to change the setting is:
– slsc_cfg_set_field_limits_scan_device

• For slsc_cfg_get_field_limits_scan_device, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_set_field_limits_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

127

innovators for industry

Name of the
function

slsc_cfg_get_field_limits_stage

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The working field limits of the intended positioning stage type

Function
signature

uint32_t slsc_cfg_get_field_limits_stage(size_t Handle, slsc_Stage Stage, double*
FieldLimitsMin, double* FieldLimitsMax);

Argument(s) Handle Handle to a syncAXIS control instance.

Stage See enum slsc_Stage.

FieldLimitsMin Like FieldLimitsMin.

FieldLimitsMax Like FieldLimitsMax.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Available to change the setting is:
– slsc_cfg_set_field_limits_stage

• For slsc_cfg_get_field_limits_stage, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_set_field_limits_stage

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

128

innovators for industry

Name of the
function

slsc_cfg_get_jump_time

Purpose Calculates the duration of a jump (outside “regular” Job):

• Based on the current setting of the specified syncAXIS control instance and

• Depending on the specified values for start dynamic and end dynamic

Function
signature

uint32_t slsc_cfg_get_jump_time(const size_t Handle, const double* SStart, const double* VStart,
const double* AStart, const double* SEnd, const double* VEnd, const double* AEnd, double
MinimalJumpTime, double* JumpTime);

Argument(s) Handle Handle to a syncAXIS control instance.

SStart Pointer to an array of dimension 2. Coordinates of starting point.
In mm.

VStart Pointer to an array of dimension 2. Velocity at starting point.
In mm/s.

AStart Pointer to an array of dimension 2. Acceleration at starting point.
In mm/s².

SEnd Pointer to an array of dimension 2. Coordinates of target point.
In mm.

VEnd Pointer to an array of dimension 2. Velocity im target point.
In mm/s.

AEnd Pointer to an array of dimension 2. Acceleration im target point.
In mm/s².

MinimalJumpTime Minimum duration for the jump. Allowed values:  0.
In s.

JumpTime Returned parameter value: pointer. Duration of the jump.
In s.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_get_jump_time is intended for isolated use in the context of Job pre-analyses
for optimization (that is, slsc_cfg_get_jump_time is not supposed to be called in the
“regular” Job). See also Chapter 2.2.4 ”Simulating and Improving Jobs”, page 24.

• Calculating the duration of a jump during Job execution and slsc_cfg_get_jump_time
are identical. However, slsc_cfg_get_jump_time never communicates with the
RTC6 board.

• slsc_cfg_get_jump_time:
– Calculates the jump duration with current setting of the specified

syncAXIS control instance (like values for dynamics, LaserMinOffTime,
LaserPreTriggerTime, MotionDecompositionConfig).

– Takes into account changes by Configuration functions (slsc_cfg_*)
(for example, slsc_cfg_set_jump_speed) after initialization

– Does not consider changes by Job functions (slsc_list_*)
(for example, slsc_list_set_jump_speed) during Job execution

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

129

innovators for industry

Comment(s)
(cont’d)

• MinimalJumpTime corresponds to MinimalJumpTime from slsc_list_jump_abs_min_time.
If you want to calculate the duration of a common jump commanded by
slsc_list_jump_abs, you need to set the MinimalJumpTime value to 0.0.

• For slsc_cfg_get_jump_time there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• slsc_cfg_get_jump_time is allowed in any Operation mode.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.7.0.

References –

Name of the
function

slsc_cfg_get_jump_time

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

130

innovators for industry

Name of the
function

slsc_cfg_get_mode

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The Operation mode (ScannerOnly, StageOnly, ScannerAndStage)

Function
signature

uint32_t slsc_cfg_get_mode(size_t Handle, slsc_OperationMode* Mode);

Argument(s) Handle Handle to a syncAXIS control instance.

Mode Returned parameter value: pointer.
See enum slsc_OperationMode.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The Operation mode of the syncAXIS control instance is set by slsc_cfg_set_mode.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
slsc_OperationMode Mode;
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_cfg_get_mode(Handle, &Mode);

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_cfg_set_mode

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

131

innovators for industry

Name of the
function

slsc_cfg_get_operation_status

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The operation status (“traffic light color”)

Function
signature

uint32_t slsc_cfg_get_operation_status(size_t Handle, slsc_OperationStatus* State);

Argument(s) Handle Handle to a syncAXIS control instance.

State Returned parameter value: pointer.
See enum slsc_OperationStatus.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_get_operation_status does not provide information on the status of Jobs.
For example, operation status “green” (syncAXIS control instance is running, no errors
occurred) does not mean that a Job is currently in execution.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
slsc_OperationStatus State;
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_cfg_get_operation_status(Handle, &State);

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_cfg_initialize_from_file

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

132

innovators for industry

Name of the
function

slsc_cfg_get_scan_device_dynamic_monitoring_level

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The criterion for which the scan devices are to be monitored
(for example, slsc_DynamicsMonitoringLevel_Velocity)

Function
signature

uint32_t slsc_cfg_get_scan_device_dynamic_monitoring_level(size_t Handle,
slsc_DynamicsMonitoringLevel* DynamicMonitoringLevel);

Argument(s) Handle Handle to a syncAXIS control instance.

DynamicMonitoringLevel Returned parameter value: pointer.
See enum slsc_DynamicsMonitoringLevel.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Available to change the setting is:
– slsc_cfg_set_scan_device_dynamic_monitoring_level

• For slsc_cfg_get_scan_device_dynamic_monitoring_level, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
slsc_DynamicsMonitoringLevel DynamicMonitoringLevel;
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_cfg_get_scan_device_dynamic_monitoring_level(Handle, &slsc_DynamicsMonitoringLevel);

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_set_scan_device_dynamic_monitoring_level

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

133

innovators for industry

Name of the
function

slsc_cfg_get_simulation_setting

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The Simulation Setting

Function
signature

uint32_t slsc_cfg_get_simulation_setting(size_t Handle, slsc_SimulationSetting*
SimulationSetting);

Argument(s) Handle Handle to a syncAXIS control instance.

SimulationSetting Returned parameter value: pointer.
See enum slsc_SimulationSetting.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The Simulation Setting of the syncAXIS control instance is changed by
slsc_cfg_set_simulation_setting.

• See also Chapter 2.5 ”About the syncAXIS control Simulation Mode”, page 31.

• For slsc_cfg_get_simulation_setting, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
slsc_SimulationSetting SimulationSetting;
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_cfg_get_simulation_setting(Handle, &SimulationSetting);

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_set_simulation_setting

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

134

innovators for industry

Name of the
function

slsc_cfg_get_stage_dynamic_monitoring_level

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The criterion for which the positioning stages are to be monitored
(for example, slsc_DynamicsMonitoringLevel_Velocity)

Function
signature

uint32_t slsc_cfg_get_stage_dynamic_monitoring_level(size_t Handle,
slsc_DynamicsMonitoringLevel* DynamicMonitoringLevel);

Argument(s) Handle Handle to a syncAXIS control instance.

DynamicMonitoringLevel Returned parameter value: pointer.
See enum slsc_DynamicsMonitoringLevel.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Available to change the setting is:
– slsc_cfg_set_stage_dynamic_monitoring_level

• For slsc_cfg_get_stage_dynamic_monitoring_level, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
slsc_DynamicsMonitoringLevel DynamicMonitoringLevel;
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_cfg_get_stage_dynamic_monitoring_level(Handle, &DynamicMonitoringLevel);

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_set_stage_dynamic_monitoring_level

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

135

innovators for industry

Name of the
function

slsc_cfg_get_sync_axis_version

Purpose Returns version info on the currently running syncAXIS-DLL.

Function
signature

VersionInfo slsc_cfg_get_sync_axis_version(void);

Argument(s) This function has no arguments.

Return value See structure VersionInfo.

Comment(s) • On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References –

Name of the
function

slsc_cfg_get_trajectory_config

Purpose Returns the current setting of the specified syncAXIS control instance for:

• The Trajectory planning configuration

Function
signature

uint32_t slsc_cfg_get_trajectory_config(size_t Handle, slsc_TrajectoryConfig** TrajConfig);

Argument(s) Handle Handle to a syncAXIS control instance.

TrajConfig Returned parameter value: pointer to a pointer.
See structure slsc_TrajectoryConfig.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_cfg_delete_trajectory_config, slsc_cfg_set_trajectory_config

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

136

innovators for industry

Name of the
function

slsc_cfg_initialize_copy

Purpose Initialization function: Creates a new (target-)syncAXIS control instance in
simulation mode with the current configuration of the specified
(source-)syncAXIS control instance (in either hardware mode or simulation mode) and
assigns it a unique Handle value.

Function
signature

uint32_t slsc_cfg_initialize_copy(size_t* Handle, size_t OriginalHandle);

Argument(s) Handle Returned parameter value: pointer.
Handle to the newly created syncAXIS control instance (which is
configured for the simulation mode).

OriginalHandle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_initialize_copy and slsc_cfg_initialize_from_file are the same, except:
– slsc_cfg_initialize_copy uses the configuration of an existing

(source-)syncAXIS control instance instead of reading it from a syncAXISConfig.xml.
– slsc_cfg_initialize_copy always builds the new (target-)syncAXIS control instance in

simulation mode only.

• slsc_cfg_initialize_copy is primarily designed to be used in the context of recording
Module files, see Code example below: slsc_cfg_initialize_copy precedes
slsc_list_begin_module to quickly create a syncAXIS control instance configured for
the simulation mode (because slsc_list_begin_module is only allowed in
simulation mode). The module is then replayed the “original”
(source-)syncAXIS control instance.

• See also Section ”Functions for “Modules””, page 95.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example See Figure 27, page 67 and Chapter 11 ”Appendix D: Application Note – Avoiding Buffer
Underruns by Using Modules”, page 347.

Version info Available as of syncAXIS-DLL V1.3.0.

References slsc_list_begin_module

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

137

innovators for industry

Name of the
function

slsc_cfg_initialize_from_file

Purpose Initialization function: Creates (by using the specified XML configuration file) a new
syncAXIS control instance and assigns a unique Handle value to it.

Function
signature

uint32_t slsc_cfg_initialize_from_file(size_t* Handle, const char* XmlConfigFileName);

Argument(s) Handle Returned parameter value: pointer.
Handle to a syncAXIS control instance.

XmlConfigFileName Name of the XML configuration file.
Pointer to a \0-terminated ANSI string, 1 byte per char.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Warning! Risk of injury due to laser radiation! slsc_cfg_initialize_from_file can
lead to states of the RTC6 board(s) in which the laser could emit unexpectedly! Make
sure that the laser is switched off before calling slsc_cfg_initialize_from_file!

• slsc_cfg_initialize_from_file is not executed, if the RTC6 board specified in the
XML configuration file is already acquired. Example: slsc_cfg_initialize_from_file is
called a second time with the same XML configuration file (and there BySerialNumber is
entered as BoardIdentificationMethod). Then, the return value indicates that Bit #06 is set
(UnplausibleOrUnknownParameter).

• slsc_cfg_initialize_from_file fails, if the FilterBandwidth value is smaller than 0.23.
Then, the return value indicates that Bit #14 is set (XmlLoadError).

• Among other things, slsc_cfg_initialize_from_file activates (arms) the laser control on
the RTC6 board (internally the RTC control command set_laser_control is used for this
purpose). Furthermore, slsc_cfg_initialize_from_file automatically executes
slsc_ctrl_enable_laser among other things. That is, the laser control signals LASERON,
LASER1 and LASER2 are actually already outputted on the RTC6 board.

• Caution! Make sure that laser safety is ensured in the entire system.

• slsc_cfg_initialize_from_file as well as the very last Job function (slsc_list_*)
– takes the scan head mirrors to the zero position
– but leaves the position of the positioning stage unchanged

• For more information about the operations which take place during the
syncAXIS control instance initialization, see page 26.

• The syncAXIS control-software package includes an XSD file (with inline comments for
user assistance) and sample XML configuration files. The XSD file defines the scheme of
the XML configuration file which must be provided with slsc_cfg_initialize_from_file
in order to initialize a syncAXIS control instance.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

138

innovators for industry

Comment(s)
(cont’d)

• slsc_cfg_reinitialize_from_file and slsc_cfg_initialize_from_file are the same, except:
– slsc_cfg_initialize_from_file assigns a unique Handle value to a

syncAXIS control instance
– With slsc_cfg_reinitialize_from_file a Handle value is specified (which remains

unchanged).

• syncAXIS control-software package does not offer any possibility to check whether and
which Handles are already present “out-of-the-box“. Therefore, users should insert
code for managing Handles.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
size_t Handle = 0;
const char* XmlConfigFileName = “syncAXISConfig.xml”;
slsc_cfg_initialize_from_file(&Handle, XmlConfigFileName);
// This Handle value must be memorized within the user program
// in order to access exactly this instance again.
// That is, Handle values cannot be queried “out-of-the-box”.

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_cfg_delete, slsc_ctrl_enable_laser, slsc_cfg_get_operation_status,
slsc_cfg_reinitialize_from_file

Name of the
function

slsc_cfg_initialize_from_file

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

139

innovators for industry

Name of the
function

slsc_cfg_register_callback_job_end_planned

Purpose Sets up that the specified “Callback function” is called when a “Callback event“ of type
“job_end_planned” occurs.

Function
signature

uint32_t slsc_cfg_register_callback_job_end_planned(size_t Handle, slsc_ExecTimeCallback
Callback, void* Context);

Argument(s) Handle Handle to a syncAXIS control instance.

Callback Function pointer to the “Callback function“ (= user-supplied function
complying to signature slsc_ExecTimeCallback).

Context Pointer to a user-supplied object. In the function Callback this object can be
accessed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • As soon as an “Callback event“ of type “job_end_planned” (see also Figure 12, page 43)
occurs inside the syncAXIS control instance the specified “Callback function” is called
automatically.

• See also Section ”Functions for Registering “Callback Events“”, page 81.

• slsc_cfg_register_callback_job_end_planned changes the current configuration of
the syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime at the time of the call. It is kept until the
next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are no default values for the arguments of
slsc_cfg_register_callback_job_end_planned to initialize the
syncAXIS control instance.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example See slsc_cfg_register_callback_job_finished_executing.

Version info Available as of syncAXIS-DLL V0.11.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

140

innovators for industry

Name of the
function

slsc_cfg_register_callback_job_finished_executing

Purpose Sets up that the specified “Callback function” is called when a “Callback event“ of type
“job_finished_executing” occurs.

Function
signature

uint32_t slsc_cfg_register_callback_job_finished_executing(size_t Handle, slsc_ExecTimeCallback
Callback, void* Context);

Argument(s) Handle Handle to a syncAXIS control instance.

Callback Function pointer to the “Callback function“ (= user-supplied function
complying to signature slsc_ExecTimeCallback).

Context Pointer to a user-supplied object. In the function Callback this object can be
accessed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • As soon as an “Callback event“ of type “job_finished_executing” (see also Figure 12,
page 43) occurs inside the syncAXIS control instance the specified “Callback function”
is called automatically.

• See also Section ”Functions for Registering “Callback Events“”, page 81.

• slsc_cfg_register_callback_job_finished_executing changes the current configu-
ration of the syncAXIS control instance. In the process, the syncAXIS control instance is
not reinitialized. The change will take effect at runtime at the time of the call. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are no default values for the arguments of
slsc_cfg_register_callback_job_finished_executing to initialize the
syncAXIS control instance.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
int Counter;
slsc_ExecTimeCallback Callback = [](size_t JobID, uint64_t Progress, double ExecTime, void*
Context)
{

int* Counter = static_cast<int*>(Context);
Counter++;

};
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_cfg_register_callback_job_finished_executing(Handle, Callback, &Counter);

Version info Available as of syncAXIS-DLL V0.11.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

141

innovators for industry

Name of the
function

slsc_cfg_register_callback_job_is_executing

Purpose Sets up that the specified “Callback function” is called when a “Callback event“ of type
“job_is_executing” occurs.

Function
signature

uint32_t slsc_cfg_register_callback_job_is_executing(size_t Handle, slsc_ExecTimeCallback
Callback, void* Context);

Argument(s) Handle Handle to a syncAXIS control instance.

Callback Function pointer to the “Callback function“ (= user-supplied function
complying to signature slsc_ExecTimeCallback).

Context Pointer to a user-supplied object. In the function Callback this object can be
accessed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • As soon as an “Callback event“ of type “job_is_executing” (see also Figure 12, page 43)
occurs inside the syncAXIS control instance the specified “Callback function” is called
automatically.

• See also Section ”Functions for Registering “Callback Events“”, page 81.

• slsc_cfg_register_callback_job_is_executing changes the current configuration of
the syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime at the time of the call. It is kept until the
next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are no default values for the arguments of
slsc_cfg_register_callback_job_is_executing to initialize the
syncAXIS control instance.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example See slsc_cfg_register_callback_job_finished_executing.

Version info Available as of syncAXIS-DLL V0.11.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

142

innovators for industry

Name of the
function

slsc_cfg_register_callback_job_loaded_enough

Purpose Sets up that the specified “Callback function” is called when a “Callback event“ of type
“job_loaded_enough” occurs.

Function
signature

uint32_t slsc_cfg_register_callback_job_loaded_enough(size_t Handle, slsc_JobCallback Callback,
void* Context);

Argument(s) Handle Handle to a syncAXIS control instance.

Callback Function pointer to the “Callback function“ (= user-supplied function
complying to signature slsc_JobCallback).

Context Pointer to a user-supplied object. In the function Callback this object can be
accessed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • As soon as an “Callback event“ of type “job_loaded_enough” (see also Figure 12, page 43)
occurs inside the syncAXIS control instance the specified “Callback function” is called
automatically.

• See also Section ”Functions for Registering “Callback Events“”, page 81.

• slsc_cfg_register_callback_job_loaded_enough changes the current configuration of
the syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime at the time of the call. It is kept until the
next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are no default values for the arguments of
slsc_cfg_register_callback_job_loaded_enough to initialize the
syncAXIS control instance.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example See slsc_cfg_register_callback_job_finished_executing.

Version info Available as of syncAXIS-DLL V0.11.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

143

innovators for industry

Name of the
function

slsc_cfg_register_callback_job_progress_planned

Purpose Sets up that the specified “Callback function” is called when a “Callback event“ of type
“job_progress_planned” occurs.

Function
signature

uint32_t slsc_cfg_register_callback_job_progress_planned(size_t Handle, slsc_ExecTimeCallback
Callback, void* Context);

Argument(s) Handle Handle to a syncAXIS control instance.

Callback Function pointer to the “Callback function“ (= user-supplied function
complying to signature slsc_ExecTimeCallback).

Context Pointer to a user-supplied object. In the function Callback this object can be
accessed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • As soon as an “Callback event“ of type “job_progress_planned” (see also Figure 12,
page 43) occurs inside the syncAXIS control instance the specified “Callback function”
is called automatically.

• See also Section ”Functions for Registering “Callback Events“”, page 81.

• slsc_cfg_register_callback_job_progress_planned changes the current configuration
of the syncAXIS control instance. In the process, the syncAXIS control instance is not
reinitialized. The change will take effect at runtime at the time of the call. It is kept until
the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are no default values for the arguments of
slsc_cfg_register_callback_job_progress_planned to initialize the
syncAXIS control instance.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example See slsc_cfg_register_callback_job_finished_executing.

Version info Available as of syncAXIS-DLL V0.11.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

144

innovators for industry

Name of the
function

slsc_cfg_register_callback_job_start_planned

Purpose Sets up that the specified “Callback function” is called when a “Callback event“ of type
“job_start_planned” occurs.

Function
signature

uint32_t slsc_cfg_register_callback_job_start_planned(size_t Handle, slsc_JobCallback Callback,
void* Context);

Argument(s) Handle Handle to a syncAXIS control instance.

Callback Function pointer to the “Callback function“ (= user-supplied function
complying to signature slsc_JobCallback).

Context Pointer to a user-supplied object. In the function Callback this object can be
accessed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • As soon as an “Callback event“ of type “job_start_planned” (see also Figure 12, page 43)
occurs inside the syncAXIS control instance the specified “Callback function” is called
automatically.

• See also Section ”Functions for Registering “Callback Events“”, page 81.

• slsc_cfg_register_callback_job_start_planned changes the current configuration of
the syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime at the time of the call. It is kept until the
next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are no default values for the arguments of
slsc_cfg_register_callback_job_start_planned to initialize the
syncAXIS control instance.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example See slsc_cfg_register_callback_job_finished_executing.

Version info Available as of syncAXIS-DLL V0.11.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

145

innovators for industry

Name of the
function

slsc_cfg_reinitialize

Purpose Initialization function: Destroys the specified (by the Handle) syncAXIS control instance and
creates it again (by using the momentary configuration settings and values that have been
previously read out). In the process, the Handle value remains unchanged.

Function
signature

uint32_t slsc_cfg_reinitialize(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_reinitialize is allowed in all Operation modes (see slsc_OperationMode).

• slsc_cfg_reinitialize is not executed, if the specified syncAXIS control instance is
currently executing a Job. Then, the return value indicates that Bit #03 is set
(NotAllowedInExecuting).

• slsc_cfg_reinitialize is not executed, if the specified Handle value does not exist. Then,
the return value indicates that Bit #02 is set (NotAllowedWithoutInitialization).

• Among other things, slsc_cfg_reinitialize activates (arms) the laser control on the
RTC6 board (internally the RTC control command set_laser_control is used for this
purpose). Furthermore, slsc_cfg_reinitialize automatically executes
slsc_ctrl_enable_laser among other things. That is, the laser control signals LASERON,
LASER1 and LASER2 are actually already outputted on the RTC6 board.

• Caution! Make sure that laser safety is ensured in the entire system.

• slsc_cfg_reinitialize as well as the very last Job function (slsc_list_*)
– takes the scan head mirrors to the zero position
– but leaves the position of the positioning stage unchanged

• For more information about the operations which take place during the
syncAXIS control instance initialization, see page 26.

• slsc_cfg_reinitialize, slsc_cfg_reinitialize_from_file and
slsc_cfg_initialize_from_file are the same, except:
– slsc_cfg_initialize_from_file assigns a unique Handle value to a

syncAXIS control instance
– With slsc_cfg_reinitialize and slsc_cfg_reinitialize_from_file a Handle value is

specified (which remains unchanged).

• Use case for slsc_cfg_reinitialize: The syncAXIS control instance is in an error state. The
user must reinitialize to continue executing Jobs. By slsc_cfg_reinitialize, the user can
simply continue to use the current configuration without having to repeat the previous
configuration steps (import syncAXISConfig.xml, series of syncAXIS-DLL function calls).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

146

innovators for industry

Comment(s)
(cont’d)

• See also Chapter 2.4 ”About Initializing syncAXIS control-based User Programs”,
page 26 with Figure 3, page 27.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.4.0.

References slsc_cfg_delete, slsc_ctrl_enable_laser, slsc_cfg_initialize_from_file

Name of the
function

slsc_cfg_reinitialize

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

147

innovators for industry

Name of the
function

slsc_cfg_reinitialize_from_file

Purpose Initialization function: Destroys the specified (by the Handle) syncAXIS control instance and
creates it again (by using the specified syncAXISConfig.xml). In the process, the Handle value
remains unchanged.

Function
signature

uint32_t slsc_cfg_reinitialize_from_file(size_t Handle, const char* XmlConfigFileName);

Argument(s) Handle Handle to a syncAXIS control instance.

XmlConfigFileName Name of the syncAXISConfig.xml.
Pointer to a \0-terminated ANSI string, 1 byte per char.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_reinitialize is allowed in all Operation modes (see slsc_OperationMode).

• slsc_cfg_reinitialize_from_file is not executed, if the specified
syncAXIS control instance is currently executing a Job. Then, the return value indicates
that Bit #03 is set (NotAllowedInExecuting).

• slsc_cfg_reinitialize_from_file is not executed, if the specified Handle value does not
exist. Then, the return value indicates that Bit #02 is set
(NotAllowedWithoutInitialization).

• Among other things, slsc_cfg_reinitialize_from_file activates (arms) the laser control
on the RTC6 board (internally the RTC control command set_laser_control is used for
this purpose). Furthermore, slsc_cfg_reinitialize_from_file automatically executes
slsc_ctrl_enable_laser among other things. That is, the laser control signals LASERON,
LASER1 and LASER2 are actually already outputted on the RTC6 board.

• Caution! Make sure that laser safety is ensured in the entire system.

• slsc_cfg_reinitialize_from_file as well as the very last Job function (slsc_list_*)
– takes the scan head mirrors to the zero position
– but leaves the position of the positioning stage unchanged

• For more information about the operations which take place during the
syncAXIS control instance initialization, see page 26.

• The syncAXIS control-software package includes an XSD file (with inline comments for
user assistance) and a sample XML configuration file. The XSD file defines the scheme
of the XML configuration file which must be provided with
slsc_cfg_reinitialize_from_file in order to initialize a syncAXIS control instance.

• slsc_cfg_reinitialize, slsc_cfg_reinitialize_from_file and
slsc_cfg_initialize_from_file are the same, except:
– slsc_cfg_initialize_from_file assigns a unique Handle value to a

syncAXIS control instance
– With slsc_cfg_reinitialize and slsc_cfg_reinitialize_from_file a Handle value is

specified (which remains unchanged).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

148

innovators for industry

Comment(s)
(cont’d)

• See also Chapter 2.4 ”About Initializing syncAXIS control-based User Programs”,
page 26 with Figure 3, page 27.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_cfg_delete, slsc_ctrl_enable_laser, slsc_cfg_initialize_from_file,
slsc_cfg_reinitialize

Name of the
function

slsc_cfg_reinitialize_from_file

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

149

innovators for industry

Name of the
function

slsc_cfg_release_stage (deprecated)

Purpose Deprecated.

Use slsc_ctrl_follow/slsc_ctrl_unfollow instead.
The specified syncAXIS control instance temporarily releases the positioning stage. Then, it
can be controlled externally (for example, by a non-syncAXIS control-based user program).

Function
signature

uint32_t slsc_cfg_release_stage (deprecated)(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

150

innovators for industry

Comment(s) • After the successful creation of a syncAXIS control instance (configured in
hardware mode; by slsc_cfg_initialize_from_file) the positioning stage is also
acquired (besides the RTC6 board).
By slsc_cfg_release_stage (deprecated), the positioning stage can be released tempo-
rarily. Releasing is typically performed in less than 0.02 s. The respective
syncAXIS control instance does not need to be destroyed and subsequently created
again (creating typically needs about 1 s). While the positioning stage is temporarily
released an external user program is able to control it.

• The Handle value of the syncAXIS control instance is not changed by
slsc_cfg_release_stage (deprecated).

• slsc_cfg_release_stage (deprecated) is not accepted, when a Job is currently being
executed.
Then, the return value indicates that Bit #03 is set (NotAllowedInExecuting).

• After slsc_cfg_release_stage (deprecated), all Jobs from the Job queue are deleted.

• After slsc_cfg_release_stage (deprecated), the syncAXIS control instance continues
to exist. However, it is transiently (until slsc_cfg_acquire_stage (deprecated) has been
called) no longer addressable by all functions:
– The operation status changes to “red” (see slsc_cfg_get_operation_status).
– Job functions (slsc_list_*) are not accepted (including slsc_list_begin – therefore, no

Job can be started). Then, the return value indicates that Bit #02 is set
(NotAllowedWithoutInitialization).

– Control functions (slsc_ctrl_*) not accepted. Then, the return value indicates that
Bit #02 is set (NotAllowedWithoutInitialization).

However, many Configuration functions (slsc_cfg_*) are accepted
(for example, slsc_cfg_delete, slsc_cfg_acquire_stage (deprecated),
slsc_cfg_select_stage).
Not accepted Configuration functions are: slsc_cfg_get_mode,
slsc_cfg_set_list_handling_mode, slsc_cfg_set_mode, as well as all functions for
registering event callbacks (cfg_register_callback_ functions, see Section ”Functions
for Registering “Callback Events“”, page 81.

• slsc_cfg_release_stage (deprecated) does not change the present laser control
configuration
(that is, for example, no slsc_ctrl_disable_laser is sent off).
In order to return the syncAXIS control instance to its original state,
slsc_cfg_acquire_stage (deprecated) must be called. In the process, RTC6 board and
positioning stage are acquired back on again. This process is typically completed in less
than 0.1 s.

Name of the
function

slsc_cfg_release_stage (deprecated)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

151

innovators for industry

Comment(s)
(cont’d)

• slsc_cfg_release_stage (deprecated) also technically releases the RTC6 board tempo-
rarily. Upon re-acquisition by slsc_cfg_acquire_stage (deprecated), its internal status
must not have been changed. Therefore, (in contrast to the positioning stage) the
RTC6 board must not be used by another user program (because it can change the
internal status of the RTC6 board).

• See also Chapter 2.12.2 ”Example – Temporarily Releasing the Positioning Stage and
Changing the Target Positioning Stage”, page 74.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
size_t Handle = 0;
const char* XmlConfigFileName = “syncAXISConfig.xml”;
slsc_cfg_initialize_from_file(&Handle, XmlConfigFileName); // typical duration: about 1 s
// [optional] define and execute a Job
slsc_cfg_release_stage (deprecated)(Handle); // typical duration: < 0.02 s
// [optional] external control of stage
slsc_cfg_acquire_stage (deprecated)(Handle); // typical duration: < 0.1 s
// [optional] define and execute a Job
// afterwards destroy instance
slsc_cfg_delete(Handle);

Version info Available as of syncAXIS-DLL V0.9.0. Deprecated as of syncAXIS-DLL V1.0.7.

References slsc_cfg_acquire_stage (deprecated)

Name of the
function

slsc_cfg_release_stage (deprecated)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

152

innovators for industry

Name of the
function

slsc_cfg_select_heuristic

Purpose For specifying the speed reduction characteristic (DynamicReductionFunction).

Function
signature

uint32_t slsc_cfg_select_heuristic(size_t Handle, uint32_t HeuristicIndex);

Argument(s) Handle Handle to a syncAXIS control instance.

HeuristicIndex Index of the desired speed reduction characteristic
(DynamicReductionFunction).
Allowed value range: 0…(DynamicReductionFunction – 1).

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_select_heuristic requires the Operation mode “ScannerAndStage“ to be active.
Otherwise, the return value indicates that Bit #11 is set (NotAllowedInCurrentMode).

• For HeuristicIndex value > (DynamicReductionFunction – 1) the return value indicates that
Bit #06 is set (UnplausibleOrUnknownParameter).

• slsc_cfg_select_heuristic changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime upon the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_select_heuristic to initialize the syncAXIS control instance:
– <cfg:Configuration>  <cfg:MotionDecompositionConfig>  <cfg:HeuristicConfig> 

<cfg:DynamicReductionFunctions>  <cfg:DynamicReductionFunction …>
(= the 1st DynamicReductionFunction tag; corresponds to
slsc_cfg_select_heuristic(HeuristicIndex = 0))

• There is no corresponding Job function (slsc_list_*) for slsc_cfg_select_heuristic.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.4.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

153

innovators for industry

Name of the
function

slsc_cfg_select_stage

Purpose For specifying the target positioning stage (“positioning stage change”).
As of syncAXIS-DLL  V1.2.0, slsc_cfg_select_stage replaces slsc_cfg_select_stage_axis
(deprecated).

Function
signature

uint32_t slsc_cfg_select_stage(size_t Handle, slsc_Stage Stage, uint32_t CorrectionFileIndex);

Argument(s) Handle Handle to a syncAXIS control instance.

Stage See enum slsc_Stage.

CorrectionFileIndex Index of the correction file to be used (correction files are specified
in the syncAXISConfig.xml; see also Section ”Correction File-related
Functions”, page 99).
Allowed values: 0…3.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • By slsc_cfg_select_stage, the positioning stage is specified which is to be moved by
slsc_ctrl_move_stage_abs.

• To be able to use slsc_cfg_select_stage a Dongle must be used which allows the use
of several positioning stages (standard Dongle not sufficient)! Otherwise, the
return value indicates that Bit #31 is set (InvalidOrMissingDongle).

• slsc_cfg_select_stage is only possible in the Mode “Manual Positioning“.

• Jobs can only be executed after the positioning stage has been re-acquired with
slsc_ctrl_follow. The Job executions after a positioning stage change are executed with
the positioning stage taken over at runtime, not with the positioning stage taken over
at planning time. See also Chapter 2.12.2 ”Example – Temporarily Releasing the
Positioning Stage and Changing the Target Positioning Stage”, page 74.

• slsc_cfg_select_stage changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized.

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_select_stage to initialize the syncAXIS control instance.

• There is no corresponding Job function (slsc_list_*) for slsc_cfg_select_stage.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.0.

References slsc_cfg_acquire_stage (deprecated), slsc_ctrl_follow, slsc_ctrl_unfollow

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

154

innovators for industry

Name of the
function

slsc_cfg_select_stage_axis (deprecated)

Purpose Deprecated.

Auxiliary function for specifying the target positioning stage.
As of syncAXIS-DLL  V1.2.0, slsc_cfg_select_stage is to be used!

Function
signature

uint32_t slsc_cfg_select_stage_axis (deprecated)(size_t Handle, uint32_t StageAxisX, uint32_t
StageAxisY, uint32_t SlecEtherCATNodeID, uint32_t DriveEtherCATNodeID, uint32_t
CorrectionFileIndex);

Argument(s) Handle Handle to a syncAXIS control instance.

StageAxisX X axis of the positioning stage to be moved.
The to-be-specified parameter value is going to be communicated
to the customer in collaboration with ACS.

StageAxisY Y axis of the positioning stage to be moved.
The to-be-specified parameter value is going to be communicated
to the customer in collaboration with ACS.

SlecEtherCATNodeID Position of the SLEC in the EtherCAT network.
The to-be-specified parameter value is going to be communicated
to the customer in collaboration with ACS.

DriveEtherCATNodeID Position of the drive in the EtherCAT network.
The to-be-specified parameter value is going to be communicated
to the customer in collaboration with ACS.

CorrectionFileIndex Index of the correction file to be used (correction files are specified
in the syncAXISConfig.xml; see also Section ”Correction File-related
Functions”, page 99).
Allowed values: 0…3.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • To be able to use slsc_cfg_select_stage_axis (deprecated) a Dongle must be used
which allows the use of several positioning stages (standard Dongle not sufficient)!
Otherwise, the return value indicates that Bit #31 is set (InvalidOrMissingDongle).

• After the call of slsc_cfg_select_stage_axis (deprecated), slsc_cfg_acquire_stage
(deprecated) must follow in order to apply the parameter values.

• See also Chapter 2.12.2 ”Example – Temporarily Releasing the Positioning Stage and
Changing the Target Positioning Stage”, page 74.

• slsc_cfg_select_stage_axis (deprecated) changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized.

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_select_stage_axis (deprecated) to initialize the syncAXIS control instance.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0…1.1.0.

References slsc_cfg_select_stage

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

155

innovators for industry

Name of the
function

slsc_cfg_set_bandwidth

Purpose Changes the FilterBandwidth value of the specified syncAXIS control instance.

Function
signature

uint32_t slsc_cfg_set_bandwidth(size_t Handle, double FilterBandwidth);

Argument(s) Handle Handle to a syncAXIS control instance.

FilterBandwidth Desired FilterBandwidth value. In Hz.
Values <0.23 are not allowed. Otherwise, the return value indicates that
Bit #06 is set (UnplausibleOrUnknownParameter).
Typical values are between 1…3 Hz, depending on the scan head
working field and the dynamic range of the positioning stage.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_bandwidth requires the Operation mode “ScannerAndStage“ to be active.
Otherwise, the return value indicates that Bit #11 is set (NotAllowedInCurrentMode).

• FilterBandwidth and the syncAXISConfig.xml tag FilterBandwidth correspond to each other.

• When initializing the syncAXIS control instance (by slsc_cfg_initialize_from_file), the
FilterBandwidth value is read from the syncAXISConfig.xml.

• slsc_cfg_set_bandwidth changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• There is no corresponding Job function (slsc_list_*) for slsc_cfg_set_bandwidth.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.3.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

156

innovators for industry

Name of the
function

slsc_cfg_set_calculation_dynamics_jump_scan_device

Purpose Changes the setting of the specified syncAXIS control instance for:

• The maximum acceleration and jerk value of the intended scan device type. The values
are used only in Trajectory planning calculations of the scan device motion – however,
only for jumps but not markings

Function
signature

uint32_t slsc_cfg_set_calculation_dynamics_jump_scan_device(size_t Handle,
double JumpAngularAcc, double JumpAngularJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

JumpAngularAcc Corresponds to Acceleration under <cfg:Configuration> 

<cfg:ScanDeviceConfig>  <cfg:CalculationDynamics> 

<cfg:JumpDynamics>.

JumpAngularJerk Corresponds to Jerk under <cfg:Configuration> 

<cfg:ScanDeviceConfig>  <cfg:CalculationDynamics> 

<cfg:JumpDynamics>.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Caution! syncAXIS control uses the Acceleration value = JumpAngularAcc =
JumpAngularAcc to plan trajectories for the Operation modes “ScannerOnly“ and
“ScannerAndStage”. Make sure that the entered values are correct.

• Caution! syncAXIS control uses the Jerk value = JumpAngularJerk =
JumpAngularJerk to plan trajectories for the Operation modes “ScannerOnly“ and
“ScannerAndStage”. Make sure that the entered values are correct.

• slsc_cfg_set_calculation_dynamics_jump_scan_device changes the current configu-
ration of the syncAXIS control instance. In the process, the syncAXIS control instance is
not reinitialized. The change will take effect at runtime as of the next slsc_list_begin*.
It is kept until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_calculation_dynamics_jump_scan_device is allowed in Operation mode
“ScannerOnly“ and “ScannerAndStage“. Otherwise, the return value indicates that Bit #11
is set (NotAllowedInCurrentMode).

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_calculation_dynamics_jump_scan_device to initialize the
syncAXIS control instance:
– <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:CalculationDynamics> 

<cfg:JumpDynamics>  <cfg:Acceleration>
– <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:CalculationDynamics> 

<cfg:JumpDynamics>  <cfg:Jerk>

• For slsc_cfg_set_calculation_dynamics_jump_scan_device, there is:
– A corresponding Job function (slsc_list_*)

slsc_list_set_calculation_dynamics_jump_scan_device
– No corresponding Control function (slsc_ctrl_*)

• Available to query the setting is:
– slsc_cfg_get_calculation_dynamics_jump_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

157

innovators for industry

Comment(s)
(cont’d)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.6.0.

References slsc_cfg_get_calculation_dynamics_jump_scan_device,
slsc_list_set_calculation_dynamics_jump_scan_device

Name of the
function

slsc_cfg_set_calculation_dynamics_jump_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

158

innovators for industry

Name of the
function

slsc_cfg_set_calculation_dynamics_mark_scan_device

Purpose Changes the setting of the specified syncAXIS control instance for:

• The maximum acceleration and jerk value of the intended scan device type. The values
are used only in Trajectory planning calculations of the scan device motion – however,
only for markings but not jumps

Function
signature

uint32_t slsc_cfg_set_calculation_dynamics_mark_scan_device(size_t Handle,
double MarkAngularAcc, double MarkAngularJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

MarkAngularAcc Corresponds to Acceleration under <cfg:Configuration> 

<cfg:ScanDeviceConfig>  <cfg:CalculationDynamics> 

<cfg:MarkDynamics>.

MarkAngularJerk Corresponds to Jerk under <cfg:Configuration> 

<cfg:ScanDeviceConfig>  <cfg:CalculationDynamics> 

<cfg:MarkDynamics>.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Caution! syncAXIS control uses the Acceleration value = MarkAngularAcc =
MarkAngularAcc to plan trajectories for the Operation modes “ScannerOnly“ and
“ScannerAndStage”. Make sure that the entered values are correct.

• Caution! syncAXIS control uses the Jerk value = MarkAngularJerk =
MarkAngularJerk to plan trajectories for the Operation modes “ScannerOnly“ and
“ScannerAndStage”. Make sure that the entered values are correct.

• slsc_cfg_set_calculation_dynamics_mark_scan_device changes the current configu-
ration of the syncAXIS control instance. In the process, the syncAXIS control instance is
not reinitialized. The change will take effect at runtime as of the next slsc_list_begin*.
It is kept until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_calculation_dynamics_mark_scan_device is allowed in Operation mode
“ScannerOnly“ and “ScannerAndStage“. Otherwise, the return value indicates that Bit #11
is set (NotAllowedInCurrentMode).

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_calculation_dynamics_mark_scan_device to initialize the
syncAXIS control instance:
– <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:CalculationDynamics> 

<cfg:MarkDynamics>  <cfg:Acceleration>
– <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:CalculationDynamics> 

<cfg:MarkDynamics>  <cfg:Jerk>

• For slsc_cfg_set_calculation_dynamics_mark_scan_device, there is:
– A corresponding Job function (slsc_list_*)

slsc_list_set_calculation_dynamics_mark_scan_device
– No corresponding Control function (slsc_ctrl_*)

• Available to query the setting is:
– slsc_cfg_get_calculation_dynamics_mark_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

159

innovators for industry

Comment(s)
(cont’d)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.6.0.

References slsc_cfg_get_calculation_dynamics_mark_scan_device,
slsc_list_set_calculation_dynamics_mark_scan_device

Name of the
function

slsc_cfg_set_calculation_dynamics_mark_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

160

innovators for industry

Name of the
function

slsc_cfg_set_calculation_dynamics_stage

Purpose Changes the setting of the specified syncAXIS control instance for:

• The maximum dynamic capabilities (“dynamic limits“) of the intended positioning
stage type. The values are used only in Trajectory planning calculations of the
positioning stage motion

Function
signature

uint32_t slsc_cfg_set_calculation_dynamics_stage(size_t Handle, slsc_Stage Stage, double
StageVel, double StageAcc, double StageJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

Stage See enum slsc_Stage.

StageVel Corresponds to Velocity under <cfg:Configuration> 

<cfg:StageConfig>  <cfg:StageList>  <cfg:Stage> 

<cfg:CalculationDynamics>.

StageAcc Corresponds to Acceleration under <cfg:Configuration> 

<cfg:StageConfig>  <cfg:StageList>  <cfg:Stage> 

<cfg:CalculationDynamics>.

StageJerk Corresponds to Jerk under <cfg:Configuration>  <cfg:StageConfig>

 <cfg:StageList>  <cfg:Stage>  <cfg:CalculationDynamics>.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Caution! syncAXIS control uses the values at Velocity, Acceleration and Jerk to
plan trajectories for the Operation mode “StageOnly” as well as for the end motion at
Job ends. Make sure that the entered values are correct.

• slsc_cfg_set_calculation_dynamics_stage changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_calculation_dynamics_stage is allowed in Operation mode “StageOnly“
and “ScannerAndStage“. Otherwise, the return value indicates that Bit #11 is set
(NotAllowedInCurrentMode).

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_calculation_dynamics_stage to initialize the syncAXIS control instance:
– <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>  <cfg:Stage> 

<cfg:CalculationDynamics>

• For slsc_cfg_set_calculation_dynamics_stage, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• Available to query the setting is:
– slsc_cfg_get_calculation_dynamics_stage

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

161

innovators for industry

Comment(s)
(cont’d)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_get_calculation_dynamics_stage

Name of the
function

slsc_cfg_set_calculation_dynamics_stage

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

162

innovators for industry

Name of the
function

slsc_cfg_set_contour_dependent_speed_control_2d

Purpose Switch on/off the “Contour-dependent speed calculation“. Furthermore, it is configured
how the syncAXIS control instance internally determines speeds along curves (“left” or
“right” of the curve mid-line; distance to it). Once the “Automatic Laser Control“is acti-
vated, these results are used to correspondingly set, for example, the laser spot distances
equidistant.

Function
signature

uint32_t slsc_cfg_set_contour_dependent_speed_control_2d(size_t Handle, int32_t Direction,
double SpotRadius);

Argument(s) Handle Handle to a syncAXIS control instance.

Direction 0: “Contour-dependent speed calculation“ = off.
Speeds are determined on the curve mid-line. Is also the default status
after syncAXIS control instance initialization by
slsc_cfg_initialize_from_file.

+1: “Contour-dependent speed calculation“ = on.
Speeds are determined right of the curve mid-line.

–1: “Contour-dependent speed calculation“ = on.
Speeds are determined left of the curve mid-line.

SpotRadius Radius of the laser spot in the working plane.
In mm.
The value specifies how far to the right or left of the curve mid-line the
speeds are determined.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_contour_dependent_speed_control_2d changes the current configu-
ration of the syncAXIS control instance. In the process, the syncAXIS control instance is
not reinitialized. The change will take effect at runtime as of the next slsc_list_begin*.
It is kept until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are no default values for the arguments of
slsc_cfg_set_contour_dependent_speed_control_2d to initialize the
syncAXIS control instance.

• slsc_cfg_set_contour_dependent_speed_control_2d has no effect (no error is
returned), if the “Automatic Laser Control“ is not switched on (for example, no
ActiveChannel is entered in syncAXISConfig.xml).

• See also Chapter 2.9.5 ”About the “Contour-dependent speed calculation“”, page 60.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

163

innovators for industry

Comment(s)
(cont’d)

• The corresponding Job function (slsc_list_*) of
slsc_cfg_set_contour_dependent_speed_control_2d is
slsc_list_set_contour_dependent_speed_control_2d.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_list_set_contour_dependent_speed_control_2d

Name of the
function

slsc_cfg_set_contour_dependent_speed_control_2d

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

164

innovators for industry

Name of the
function

slsc_cfg_set_dynamic_limits_scan_device

Purpose Changes the setting of the specified syncAXIS control instance for:

• The maximum dynamic capabilities (“dynamic limits“) of the intended scan device type

Function
signature

uint32_t slsc_cfg_set_dynamic_limits_scan_device(size_t Handle, double AngularVel, double
AngularAcc, double AngularJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

AngularVel Corresponds to Velocity under <cfg:Configuration> 

<cfg:ScanDeviceConfig>  <cfg:DynamicLimits>.

AngularAcc Corresponds to Acceleration under <cfg:Configuration> 

<cfg:ScanDeviceConfig>  <cfg:DynamicLimits>.

AngularJerk Corresponds to Jerk under <cfg:Configuration> 

<cfg:ScanDeviceConfig>  <cfg:DynamicLimits>.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_dynamic_limits_scan_device changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_dynamic_limits_scan_device is allowed in Operation mode “ScannerOnly“
and “ScannerAndStage“. Otherwise, the return value indicates that Bit #11 is set
(NotAllowedInCurrentMode).

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_dynamic_limits_scan_device to initialize the syncAXIS control instance:
– <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:DynamicLimits>

• For slsc_cfg_set_dynamic_limits_scan_device, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• Available to query the setting is:
– slsc_cfg_get_dynamic_limits_scan_device

• Exceedances automatically trigger the reaction defined in DynamicViolationReaction or
slsc_cfg_set_dynamic_violation_reaction.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_get_dynamic_limits_scan_device, slsc_cfg_set_dynamic_violation_reaction,
slsc_cfg_set_scan_device_dynamic_monitoring_level

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

165

innovators for industry

Name of the
function

slsc_cfg_set_dynamic_limits_stage

Purpose Changes the setting of the specified syncAXIS control instance for:

• The dynamic limits of the intended positioning stage type

Function
signature

uint32_t slsc_cfg_set_dynamic_limits_stage(size_t Handle, slsc_Stage Stage, double StageVel,
double StageAcc, double StageJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

Stage See enum slsc_Stage.

StageVel Corresponds to Velocity under <cfg:Configuration> 

<cfg:StageConfig>  <cfg:StageList>  <cfg:Stage> 

<cfg:DynamicLimits>.

StageAcc Corresponds to Acceleration under <cfg:Configuration> 

<cfg:StageConfig>  <cfg:StageList>  <cfg:Stage> 

<cfg:DynamicLimits>.

StageJerk Corresponds to Jerk under <cfg:Configuration>  <cfg:StageConfig>

 <cfg:StageList>  <cfg:Stage>  <cfg:DynamicLimits>.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_dynamic_limits_stage changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_dynamic_limits_stage is allowed in Operation mode “StageOnly“ and
“ScannerAndStage“. Otherwise, the return value indicates that Bit #11 is set
(NotAllowedInCurrentMode).

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_dynamic_limits_stage to initialize the syncAXIS control instance:
– <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>  <cfg:Stage> 

<cfg:DynamicLimits>

• For slsc_cfg_set_dynamic_limits_stage, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• Available to query the setting is:
– slsc_cfg_get_dynamic_limits_stage

• Exceedances automatically trigger the reaction defined in DynamicViolationReaction or
slsc_cfg_set_dynamic_violation_reaction.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_get_dynamic_limits_stage, slsc_cfg_set_dynamic_violation_reaction,
slsc_cfg_set_stage_dynamic_monitoring_level

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

166

innovators for industry

Name of the
function

slsc_cfg_set_dynamic_violation_reaction

Purpose Changes the setting of the specified syncAXIS control instance for:

• The reaction when a limit value exceedance occurs

Function
signature

uint32_t slsc_cfg_set_dynamic_violation_reaction(size_t Handle, slsc_DynamicViolationReaction
DynamicViolationReaction);

Argument(s) Handle Handle to a syncAXIS control instance.

DynamicViolationReaction See enum slsc_DynamicViolationReaction.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_dynamic_violation_reaction changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_dynamic_violation_reaction is allowed in Operation mode
“ScannerOnly“, “StageOnly“, “ScannerAndStage“.

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_dynamic_violation_reaction to initialize the syncAXIS control instance:
– <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:DynamicViolationReaction>

• For slsc_cfg_set_dynamic_violation_reaction, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// Handle: see Code example at slsc_cfg_initialize_from_file
// Only Warnings
slsc_cfg_set_dynamic_violation_reaction(Handle, slsc_DynamicViolationReaction_WarningOnly);

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_get_dynamic_violation_reaction

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

167

innovators for industry

Name of the
function

slsc_cfg_set_field_limits_scan_device

Purpose Changes the setting of the specified syncAXIS control instance for:

• The working field limits of the intended scan device type

Function
signature

uint32_t slsc_cfg_set_field_limits_scan_device(size_t Handle, const double* FieldLimitsMin,
const double* FieldLimitsMax);

Argument(s) Handle Handle to a syncAXIS control instance.

FieldLimitsMin Pointer to an array of dimension 2.
Corresponds to the Min attributes of <cfg:XDirection Min=“…“ … />
and <cfg:YDirection Min=“…“ … /> under <cfg:Configuration> 

<cfg:ScanDeviceConfig>  <cfg:FieldLimits>.

FieldLimitsMax Pointer to an array of dimension 2.
Corresponds to the Max attributes of <cfg:XDirection Max=“…“ … />
and <cfg:YDirection Max=“…“ … /> under <cfg:Configuration> 

<cfg:ScanDeviceConfig>  <cfg:FieldLimits>.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_field_limits_scan_device changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_field_limits_scan_device is allowed in Operation mode “ScannerOnly“ and
“ScannerAndStage“. Otherwise, the return value indicates that Bit #11 is set
(NotAllowedInCurrentMode).

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_field_limits_scan_device to initialize the syncAXIS control instance:
– <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:FieldLimits>

• For slsc_cfg_set_field_limits_scan_device, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• Available to query the setting is:
– slsc_cfg_get_field_limits_scan_device

• Exceedances automatically trigger the reaction defined in DynamicViolationReaction or
slsc_cfg_set_dynamic_violation_reaction.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
double FieldLimitsMin[2] = { -10.0, -10.0 };
double FieldLimitsMax[2] = { 10.0, 10.0 };
// Handle: see Code example bei slsc_cfg_initialize_from_file
slsc_cfg_set_field_limits_scan_device(Handle, FieldLimitsMin, FieldLimitsMax);

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_get_field_limits_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

168

innovators for industry

Name of the
function

slsc_cfg_set_field_limits_stage

Purpose Changes the setting of the specified syncAXIS control instance for:

• The working field limits of the intended positioning stage type

Function
signature

uint32_t slsc_cfg_set_field_limits_stage(size_t Handle, slsc_Stage Stage, const double*
FieldLimitsMin, const double* FieldLimitsMax);

Argument(s) Handle Handle to a syncAXIS control instance.

Stage See enum slsc_Stage.

FieldLimitsMin Pointer to an array of dimension 2.
Corresponds to the Min attributes of <cfg:XDirection Min=“…“ … />
and <cfg:YDirection Min=“…“ … /> under <cfg:Configuration> 

<cfg:StageConfig>  <cfg:StageList>  <cfg:Stage> 

<cfg:FieldLimits>.

FieldLimitsMax Pointer to an array of dimension 2.
Corresponds to the Max attributes of <cfg:XDirection Max=“…“ … />
and <cfg:YDirection Max=“…“ … /> under <cfg:Configuration> 

<cfg:StageConfig>  <cfg:StageList>  <cfg:Stage> 

<cfg:FieldLimits>.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_field_limits_stage changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_field_limits_stage is allowed in Operation mode “StageOnly“ and
“ScannerAndStage“. Otherwise, the return value indicates that Bit #11 is set
(NotAllowedInCurrentMode).

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_field_limits_stage to initialize the syncAXIS control instance:
– <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>  <cfg:Stage> 

<cfg:FieldLimits>

• For slsc_cfg_set_field_limits_stage, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• Available to query the setting is:
– slsc_cfg_get_field_limits_stage

• Exceedances automatically trigger the reaction defined in DynamicViolationReaction or
slsc_cfg_set_dynamic_violation_reaction.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

169

innovators for industry

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
double FieldLimitsMin[2] = { -150.0, -150.0 };
double FieldLimitsMax[2] = { 150.0, 150.0 };
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_cfg_set_field_limits_stage(Handle, slsc_Stage1, FieldLimitsMin, FieldLimitsMax);

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_get_field_limits_stage

Name of the
function

slsc_cfg_set_field_limits_stage

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

170

innovators for industry

Name of the
function

slsc_cfg_set_jump_speed

Purpose Changes the setting of the specified syncAXIS control instance for:

• The jump speed

Function
signature

uint32_t slsc_cfg_set_jump_speed(size_t Handle, double JumpSpeed);

Argument(s) Handle Handle to a syncAXIS control instance.

JumpSpeed Speed. In mm/s.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_jump_speed changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_jump_speed is allowed in Operation mode
“ScannerOnly“, “StageOnly“, “ScannerAndStage“.

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_jump_speed to initialize the syncAXIS control instance:
– <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:JumpSpeed …>

• Prior to the first call of slsc_cfg_set_jump_speed, the configuration parameter values
in the syncAXIS control instance are possibly no longer set in the same way as defined
in syncAXISConfig.xml (see slsc_cfg_initialize_from_file). The jump speed could have
been changed by slsc_cfg_set_trajectory_config in the meantime.

• The corresponding Job function (slsc_list_*) of slsc_cfg_set_jump_speed is
slsc_list_set_jump_speed.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_cfg_initialize_from_file, slsc_cfg_set_trajectory_config, slsc_list_set_jump_speed

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

171

innovators for industry

Name of the
function

slsc_cfg_set_list_handling_mode

Purpose Sets the handling and the return behavior of the Job functions (slsc_list_*).

Function
signature

uint32_t slsc_cfg_set_list_handling_mode(size_t Handle, slsc_ListHandlingMode Mode,
bool (*Predicate)(uint32_t));

Argument(s) Handle Handle to a syncAXIS control instance.

Mode See enum slsc_ListHandlingMode.

Predicate Function signature for the user-supplied function.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_list_handling_mode changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime at the time of the call. It is kept until the
next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_list_handling_mode to initialize the syncAXIS control instance.

• slsc_cfg_set_list_handling_mode changes the behavior of all Job functions
(slsc_list_*).

• The Predicate argument is only evaluated for Mode =
slsc_ListHandlingMode_RepeatWhilePredicate (a Predicate function can be specified for this
mode only). With slsc_ListHandlingMode_ReturnAtOnce and
slsc_ListHandlingMode_RepeatWhileBufferFull, no Predicate function is necessary.

• Prior to the first call of slsc_cfg_set_list_handling_mode, the configuration
parameter values in the syncAXIS control instance are set as defined in
syncAXISConfig.xml
(see slsc_cfg_initialize_from_file).

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

172

innovators for industry

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// Example for “ReturnAtOnce”
slsc_cfg_set_list_handling_mode(Handle,
slsc_ListHandlingMode::slsc_ListHandlingMode_ReturnAtOnce, nullptr);

// Example for “RepeatWhileBufferFull”
slsc_cfg_set_list_handling_mode(Handle,
slsc_ListHandlingMode::slsc_ListHandlingMode_RepeatWhileBufferFull, nullptr);

// Example for “RepeatWhilePredicate”
slsc_cfg_set_list_handling_mode(Handle,
slsc_ListHandlingMode::slsc_ListHandlingMode_RepeatWhilePredicate, [](uint32_t RetVal)

{
bool Flag = (0x0010 == RetVal);
if (Flag)
{

std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
return Flag;

});

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_cfg_initialize_from_file

Name of the
function

slsc_cfg_set_list_handling_mode

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

173

innovators for industry

Name of the
function

slsc_cfg_set_list_handling_mode_with_context

Purpose Like slsc_cfg_set_list_handling_mode. But in addition, a context can be specified.
Sets the handling and the return behavior of the Job functions (slsc_list_*).

Function
signature

uint32_t slsc_cfg_set_list_handling_mode_with_context(size_t Handle,
slsc_ListHandlingMode Mode, bool (*Predicate)(uint32_t, void*), void* Context);

Argument(s) Handle Handle to a syncAXIS control instance.

Mode See enum slsc_ListHandlingMode.

Predicate Function signature for the user-supplied function.

Context Pointer to a user-supplied object.
The object can be accessed in the function Predicate.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_list_handling_mode_with_context changes the current configuration
of the syncAXIS control instance. In the process, the syncAXIS control instance is not
reinitialized. The change will take effect at runtime at the time of the call. It is kept until
the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_list_handling_mode_with_context to initialize the
syncAXIS control instance.

• slsc_cfg_set_list_handling_mode_with_context (just like
slsc_cfg_set_list_handling_mode) changes the behavior of all Job functions
(slsc_list_*).

• The Predicate argument is only evaluated for Mode =
slsc_ListHandlingMode_RepeatWhilePredicate (a Predicate function can be specified for this
mode only). With slsc_ListHandlingMode_ReturnAtOnce and
slsc_ListHandlingMode_RepeatWhileBufferFull no Predicate function is necessary.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.0.

References slsc_cfg_set_list_handling_mode, slsc_cfg_initialize_from_file

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

174

innovators for industry

Name of the
function

slsc_cfg_set_mark_speed

Purpose Changes the setting of the specified syncAXIS control instance for:

• The marking speed

Function
signature

uint32_t slsc_cfg_set_mark_speed(size_t Handle, double MarkSpeed);

Argument(s) Handle Handle to a syncAXIS control instance.

MarkSpeed Speed. In mm/s.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_mark_speed changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_mark_speed is allowed in Operation mode
“ScannerOnly“, “StageOnly“, “ScannerAndStage“.

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_mark_speed to initialize the syncAXIS control instance:
– <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:MarkSpeed …>

• Prior to the first call of slsc_cfg_set_mark_speed, the configuration parameter values
in the syncAXIS control instance are possibly no longer set in the same way as defined
in syncAXISConfig.xml (see slsc_cfg_initialize_from_file). The marking speed could have
been changed by slsc_cfg_set_trajectory_config in the meantime.

• The corresponding Job function (slsc_list_*) of slsc_cfg_set_mark_speed is
slsc_list_set_mark_speed.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_cfg_initialize_from_file, slsc_cfg_set_trajectory_config, slsc_list_set_mark_speed

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

175

innovators for industry

Name of the
function

slsc_cfg_set_matrix_and_offset

Purpose Changes the setting of the specified syncAXIS control instance for:

• Target point coordinates according to a transformation matrix and an offset value

Function
signature

uint32_t slsc_cfg_set_matrix_and_offset(size_t Handle, const double* Matrix, const double*
Offset);

Argument(s) Handle Handle to a syncAXIS control instance.

Matrix Pointer to an array of dimension 4.
Coefficients m11…m22 of a (2 × 2) transformation matrix.

Offset Pointer to an array of dimension 2.
x value and y value by which target points are moved in the working field.
In mm.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_matrix_and_offset changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are no default values for the arguments of
slsc_cfg_set_matrix_and_offset to initialize the syncAXIS control instance.

• Target point coordinates of Job functions (slsc_list_*):
see list bullet on page 268.

• slsc_cfg_set_matrix_and_offset calculates the new target points as
slsc_list_set_matrix_and_offset, see list bullet on page 266.

• With suitable transformation matrix coefficients (argument Matrix), for example,
scaling, rotating or flipping of marking patterns can be achieved. See also Section
”Functions for Changing Target Point Coordinates”, page 92.

• The corresponding Job function (slsc_list_*) of slsc_cfg_set_matrix_and_offset is
slsc_list_set_matrix_and_offset.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.0.

References slsc_list_set_matrix_and_offset

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

176

innovators for industry

Name of the
function

slsc_cfg_set_mode

Purpose Changes the setting of the specified syncAXIS control instance for:

• The Operation mode (ScannerOnly, StageOnly, ScannerAndStage)

Function
signature

uint32_t slsc_cfg_set_mode(size_t Handle, slsc_OperationMode Mode);

Argument(s) Handle Handle to a syncAXIS control instance.

Mode See enum slsc_OperationMode.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_mode changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is reinitialized!
The change will take effect at runtime at the time of the call. It is kept until the next
slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_mode to initialize the syncAXIS control instance.

• slsc_cfg_set_mode is not accepted, when a Job is currently being executed.
Then, the return value indicates that Bit #03 is set (NotAllowedInExecuting).

• After slsc_cfg_set_mode, all Jobs from the Job queue are deleted.

• For the dynamic limits which are used in the various Operation modes, see enum
slsc_OperationMode.

• In Operation mode ScannerOnly, the to-be-executed motions of the Job are only sent to
the scan head.

• In Operation mode StageOnly, the to-be-executed motions of the Job are only sent to the
positioning stage.

• In Operation mode ScannerAndStage, the to-be-executed motions of the Job are corre-
spondingly assigned to both positioning stage and scan head
(“Motion decomposition”).

• The Operation mode of the syncAXIS control instance is queried by
slsc_cfg_get_mode.

• If slsc_cfg_set_mode is not called, then the Operation mode of the
syncAXIS control instance remains set as specified in the syncAXISConfig.xml (see
slsc_cfg_initialize_from_file) used for initialization.

• If a function (this is generally true in syncAXIS control) is not allowed due to the current
Operation mode, then the return value indicates that Bit #11 is set
(NotAllowedInCurrentMode).

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_cfg_set_mode(Handle, ScannerOnly);

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_cfg_get_mode

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

177

innovators for industry

Name of the
function

slsc_cfg_set_part_displacement

Purpose Applies a Matrix and an Offset to the set trajectory for the specified scan device (scan head).
See Chapter 8.3 ”About Transformations in syncAXIS control V1.2.4 and Higher”,
page 332.

Function
signature

uint32_t slsc_cfg_set_part_displacement(size_t Handle, slsc_ScanDevice ScanDevice, const
double* Matrix, const double* Offset);

Argument(s) Handle Handle to a syncAXIS control instance.

ScanDevice See enum slsc_ScanDevice.

Matrix Pointer to an array of dimension 4.
Coefficients m11…m22 of a (2 × 2) transformation matrix.

Offset Pointer to an array of dimension 2.
x value and y value by which target points are moved in the working field.
In mm.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_part_displacement changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• Optionally, in the syncAXISConfig.xml a “base” transformation can be setup for the
specified scan device (tag <cfg:BasePartDisplacement>). Matrix and Offset of
slsc_cfg_set_part_displacement are additional to this “base” transformation, see
Chapter 8.3 ”About Transformations in syncAXIS control V1.2.4 and Higher”,
page 332.

• slsc_cfg_set_part_displacement is designed to compensate for minor offsets and
rotations. How much exactly can be compensated for is restricted by the scan device
dynamics and depends heavily on the marking speed, size and shape of the
marking pattern as well as the scan head working field size.

• The effects of Matrix and Offset are visible in the simulation result.

• There is no corresponding Job function (slsc_list_*) for
slsc_cfg_set_matrix_and_offset.

• With slsc_cfg_set_part_displacement, transformations received from vision systems
can be applied.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

178

innovators for industry

Name of the
function

slsc_cfg_set_rot_and_offset_2d

Purpose Changes the setting of the specified syncAXIS control instance for:

• Target point coordinates by an angle and an offset value

Function
signature

uint32_t slsc_cfg_set_rot_and_offset_2d(size_t Handle, double Angle, const double* Offset);

Argument(s) Handle Handle to a syncAXIS control instance.

Angle Angle (about the origin 0,0) by which target points are rotated in the
working field. In rad.
Positive values: rotation is counterclockwise.
Negative values: rotation is clockwise.

Offset Pointer to an array of dimension 2.
x value and y value by which target points are moved in the working field.
In mm.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_rot_and_offset_2d changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are no default values for the arguments of
slsc_cfg_set_rot_and_offset_2d to initialize the syncAXIS control instance.

• Target point coordinates of Job functions (slsc_list_*):
see list bullet on page 268.

• slsc_cfg_set_rot_and_offset_2d calculates the new target points as
slsc_list_set_rot_and_offset_2d, see there.

• The corresponding Job function (slsc_list_*) of slsc_cfg_set_rot_and_offset_2d is
slsc_list_set_rot_and_offset_2d.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_list_arc_abs, slsc_list_circle_2d_abs, slsc_list_jump_abs, slsc_list_mark_abs,
slsc_list_set_rot_and_offset_2d

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

179

innovators for industry

Name of the
function

slsc_cfg_set_scan_device_dynamic_monitoring_level

Purpose Changes the setting of the specified syncAXIS control instance for:

• The criterion for which the scan devices are to be monitored
(for example, slsc_DynamicsMonitoringLevel_Velocity)

Function
signature

uint32_t slsc_cfg_set_scan_device_dynamic_monitoring_level(size_t Handle,
slsc_DynamicsMonitoringLevel DynamicMonitoringLevel);

Argument(s) Handle Handle to a syncAXIS control instance.

DynamicMonitoringLevel See enum slsc_DynamicsMonitoringLevel.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_scan_device_dynamic_monitoring_level changes the current configu-
ration of the syncAXIS control instance. In the process, the syncAXIS control instance is
not reinitialized. The change will take effect at runtime as of the next slsc_list_begin*.
It is kept until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_scan_device_dynamic_monitoring_level is allowed in Operation mode
“ScannerOnly“ and “ScannerAndStage“. Otherwise, the return value indicates that Bit #11
is set (NotAllowedInCurrentMode).

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_scan_device_dynamic_monitoring_level to initialize the
syncAXIS control instance:
– <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:MonitoringLevel>

• For slsc_cfg_set_scan_device_dynamic_monitoring_level, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• Available to change the setting is:
– slsc_cfg_get_scan_device_dynamic_monitoring_level

• Exceedances automatically trigger the reaction defined in DynamicViolationReaction or
slsc_cfg_set_dynamic_violation_reaction.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// Handle: see Code example at slsc_cfg_initialize_from_file
// Position AND velocity
slsc_cfg_set_scan_device_dynamic_monitoring_level(Handle,
slsc_DynamicsMonitoringLevel_Velocity);

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_get_scan_device_dynamic_monitoring_level,
slsc_cfg_set_dynamic_violation_reaction, slsc_cfg_set_dynamic_limits_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

180

innovators for industry

Name of the
function

slsc_cfg_set_simulation_setting

Purpose Changes the setting of the specified syncAXIS control instance for:

• The Simulation Setting

Function
signature

uint32_t slsc_cfg_set_simulation_setting(size_t Handle, slsc_SimulationSetting
SimulationSetting);

Argument(s) Handle Handle to a syncAXIS control instance.

SimulationSetting See enum slsc_SimulationSetting.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_simulation_setting changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is reinitialized!
The change will take effect at runtime at the time of the call. It is kept until the next
slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_simulation_setting has no effect, if the addressed
syncAXIS control instance has already the Simulation Setting.

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_simulation_setting to initialize the syncAXIS control instance:
– <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:SimulationConfig> 

<cfg:SimulationMode>

• slsc_cfg_set_simulation_setting is not accepted, when a Job is currently being
executed. Then, the return value indicates that Bit #03 is set (NotAllowedInExecuting).

• After slsc_cfg_set_simulation_setting, all Jobs from the Job queue are deleted.

• The Simulation Setting of the syncAXIS control instance is queried by
slsc_cfg_get_simulation_setting.

• See also Chapter 2.5 ”About the syncAXIS control Simulation Mode”, page 31.

• For slsc_cfg_set_simulation_setting, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// Handle: see Code example at slsc_cfg_initialize_from_file
// hardware mode
// slsc_cfg_set_simulation_setting(Handle, slsc_SimulationSetting_HardwareMode);
// simulation mode
slsc_cfg_set_simulation_setting(Handle, slsc_SimulationSetting_SimulationMode);

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_get_simulation_setting

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

181

innovators for industry

Name of the
function

slsc_cfg_set_stage_dynamic_monitoring_level

Purpose Changes the setting of the specified syncAXIS control instance for:

• The criterion for which the positioning stages are to be monitored
(for example, slsc_DynamicsMonitoringLevel_Velocity)

Function
signature

uint32_t slsc_cfg_set_stage_dynamic_monitoring_level(size_t Handle,
slsc_DynamicsMonitoringLevel DynamicMonitoringLevel);

Argument(s) Handle Handle to a syncAXIS control instance.

DynamicMonitoringLevel See enum slsc_DynamicsMonitoringLevel.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_stage_dynamic_monitoring_level changes the current configuration of
the syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• slsc_cfg_set_stage_dynamic_monitoring_level is allowed in Operation mode
“StageOnly“ and “ScannerAndStage“. Otherwise, the return value indicates that Bit #11 is
set (NotAllowedInCurrentMode).

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_stage_dynamic_monitoring_level to initialize the
syncAXIS control instance:
– <cfg:Configuration>  <cfg:StageConfig>  <cfg:MonitoringLevel>

• For slsc_cfg_set_stage_dynamic_monitoring_level, there is:
– No corresponding Job function (slsc_list_*)
– No corresponding Control function (slsc_ctrl_*)

• Available to change the setting is:
– slsc_cfg_get_stage_dynamic_monitoring_level

• Exceedances automatically trigger the reaction defined in DynamicViolationReaction or
slsc_cfg_set_dynamic_violation_reaction.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// Handle: see Code example at slsc_cfg_initialize_from_file
// Position AND velocity
slsc_cfg_set_stage_dynamic_monitoring_level(Handle, slsc_DynamicsMonitoringLevel_Velocity);

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_cfg_get_stage_dynamic_monitoring_level,
slsc_cfg_set_dynamic_violation_reaction, slsc_cfg_set_dynamic_limits_stage

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

182

innovators for industry

Name of the
function

slsc_cfg_set_trajectory_config

Purpose Changes the setting of the specified syncAXIS control instance for:

• The Trajectory planning configuration

Function
signature

uint32_t slsc_cfg_set_trajectory_config(size_t Handle, const slsc_TrajectoryConfig*
TrajConfig);

Argument(s) Handle Handle to a syncAXIS control instance.

TrajConfig See structure slsc_TrajectoryConfig.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_cfg_set_trajectory_config changes the current configuration of the
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change will take effect at runtime as of the next slsc_list_begin*. It is kept
until the next slsc_cfg_delete or slsc_cfg_reinitialize_from_file.

• In the syncAXISConfig.xml there are default values for the arguments of
slsc_cfg_set_trajectory_config to initialize the syncAXIS control instance.

• To delete the trajectory configuration object (in order to avoid memory leaks) after
slsc_cfg_set_trajectory_config again, slsc_cfg_delete_trajectory_config is available.

• Prior to the first call of slsc_cfg_set_trajectory_config, the configuration
parameter values in the syncAXIS control instance are set as defined in
syncAXISConfig.xml (see slsc_cfg_initialize_from_file).

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_cfg_delete_trajectory_config, slsc_cfg_get_trajectory_config,
slsc_cfg_initialize_from_file

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

183

innovators for industry

Name of the
function

slsc_ctrl_disable_laser

Purpose Inhibits that the laser control signals LASERON, LASER1 and LASER2 (see RTC6 Manual) are
outputted at the RTC6 board.

Function
signature

uint32_t slsc_ctrl_disable_laser(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Prior to slsc_ctrl_disable_laser, slsc_cfg_initialize_from_file must have been
executed. Among other things, slsc_cfg_initialize_from_file activates (arms) the laser
control on the RTC6 board (internally the RTC control command set_laser_control is
used for this purpose).

• By slsc_ctrl_disable_laser, the laser control signals are inhibited in the specified
syncAXIS control instance which have been released by slsc_cfg_initialize_from_file
or slsc_ctrl_enable_laser before.

• The behavior of slsc_ctrl_disable_laser and the RTC6 control command disable_laser
correspond (see RTC6 Manual on suppressed ports, port values etc.).
However, slsc_ctrl_disable_laser has a return value.

• slsc_ctrl_disable_laser is always accepted (as with all Control functions (slsc_ctrl_*)),
if the operation status is “green” (see slsc_cfg_get_operation_status).

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_ctrl_enable_laser, slsc_cfg_get_operation_status, slsc_cfg_initialize_from_file

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

184

innovators for industry

Name of the
function

slsc_ctrl_enable_laser

Purpose Releases the laser control signals LASERON, LASER1 and LASER2 (see RTC6 Manual) at the
RTC6 board.

Function
signature

uint32_t slsc_ctrl_enable_laser(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Prior to slsc_ctrl_enable_laser, slsc_cfg_initialize_from_file must have been
executed.

• slsc_ctrl_enable_laser is not allowed, when a list is currently processed.
Otherwise, the return value indicates that Bit #03 is set (NotAllowedInExecuting).
Other than that (and that slsc_ctrl_enable_laser has a return value), the behavior of
slsc_ctrl_enable_laser and the RTC6 control command enable_laser correspond (see
RTC6 Manual on enabled ports, port values etc.).

• Caution! Make sure that laser safety is ensured in the entire system.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_cfg_initialize_from_file, slsc_ctrl_disable_laser

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

185

innovators for industry

Name of the
function

slsc_ctrl_follow

Purpose To re-acquire the positioning stage after a slsc_ctrl_unfollow.

Function
signature

uint32_t slsc_ctrl_follow(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_ctrl_follow also automatically terminates the Mode “Manual Positioning“ of the
specified syncAXIS control instance, see also Chapter 2.12 ”About the Mode “Manual
Positioning“”, page 70.

• slsc_ctrl_follow is similar to slsc_cfg_acquire_stage (deprecated) but faster.
Furthermore, syncAXIS-DLL-internal Job planning is not interrupted and already calcu-
lated Jobs are not lost.

• The complementary function of slsc_ctrl_follow is slsc_ctrl_unfollow.

• slsc_ctrl_follow is only allowed after a slsc_ctrl_unfollow.

• slsc_ctrl_follow allows changing positioning stages in combination with
slsc_cfg_select_stage.
Note that with syncAXIS-DLL  V1.0.7 the currently used correction file is not
exchanged in the process.

• If there is at least one Job in the Job queue, then it is checked whether the position of
the positioning stage planned for the Job start and the current position of the
positioning stage match. With a mismatch (cause: because of slsc_list_begin_absolute
or the positioning stage has been manually positioned), the return value indicates that
Bit #12 is set (InvalidPosition; the positioning stage must then be moved to the correct
position, see also Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70).

• If there is no Job in the Job queue, then the current positioning stage position is used
for Trajectory planning of the next Job.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.0.7.

References slsc_ctrl_unfollow

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

186

innovators for industry

Name of the
function

slsc_ctrl_get_error

Purpose Returns information on an error that occurred (error number ErrorNr).

Function
signature

uint32_t slsc_ctrl_get_error(size_t Handle, size_t ErrorNr, uint64_t* ErrorCode, char* ErrorMsg,
size_t MsgBufSize);

Argument(s) Handle Handle to a syncAXIS control instance.

ErrorNr Error number for which the information is to be queried.
Allowed value range: 0…[(ErrorCount of slsc_ctrl_get_error_count) – 1].

ErrorCode Error code.
Returned parameter value: pointer.
See Chapter 5 ”Error Codes with slsc_ctrl_get_error, Log File and Console”,
page 282.

ErrorMsg Returned parameter value: pointer to a char array. The char array must have
been allocated by users previously.
Forwards additional text on the error, if available.

MsgBufSize Character count of the char array allocated to ErrorMsg.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • In order to specify a meaningful value for ErrorNr, the number of present errors must
be determined first. Therefore, slsc_ctrl_get_error_count must be called before
slsc_ctrl_get_error.

• The first occurred error is the oldest detected error. It has the number 0.

• slsc_ctrl_get_error throws an exception with:
– (ErrorCount from slsc_ctrl_get_error_count) = 0 (that is, there is no error at all)
– ErrorNr > [(ErrorCount from slsc_ctrl_get_error_count) – 1]

• The text message is clipped to the size of MsgBufSize (that is, if the text message is bigger
than MsgBufSize, then ErrorMsg contains only the number of characters as defined by
MsgBufSize).

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

Latest change with syncAXIS-DLL V1.1.0: data type of ErrorNr.

References slsc_ctrl_get_error_count

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

187

innovators for industry

Name of the
function

slsc_ctrl_get_error_count

Purpose Returns the number of present errors.

Function
signature

uint32_t slsc_ctrl_get_error_count(size_t Handle, size_t* ErrorCount);

Argument(s) Handle Handle to a syncAXIS control instance.

ErrorCount Returned parameter value: pointer.
Number of present errors.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • In order to specify a meaningful value for ErrorNr (at slsc_ctrl_get_error), the number
of present errors must be determined first. Therefore, slsc_ctrl_get_error_count must
be called before slsc_ctrl_get_error.

• The first occurred error is the oldest detected error. It has the number 0.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_ctrl_get_error

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

188

innovators for industry

Name of the
function

slsc_ctrl_get_exec_state

Purpose Returns the state of the Execution Layer.

Function
signature

uint32_t slsc_ctrl_get_exec_state(size_t Handle, slsc_ExecState* State);

Argument(s) Handle Handle to a syncAXIS control instance.

State Returned parameter value: pointer.
See enum slsc_ExecState.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The RTC6 board execution state (see enum slsc_ExecState: slsc_ExecState_Idle,
slsc_ExecState_ReadyForExecution, slsc_ExecState_Executing, slsc_ExecState_NotInitOrError)
does not give any information whether additional Job functions (slsc_list_*) can be
submitted at the moment (for this, see slsc_ctrl_is_list_input_buffer_full). These both
properties are not interdependent.

• For example, by slsc_ctrl_get_exec_state it can be detected whether
– an execution can be started (for this purpose, the execution state must be

slsc_ExecState_ReadyForExecution)
– the RTC6 board can be released (for example, at the end of the user program) again

(for this purpose, the execution state must not be slsc_ExecState_Executing)
– the operating mode of the syncAXIS control instance can be changed

(for this purpose, the execution state must not be slsc_ExecState_Executing)

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
slsc_ExecState State;
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_ctrl_get_exec_state(Handle, &State)

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_ctrl_is_list_input_buffer_full

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

189

innovators for industry

Name of the
function

slsc_ctrl_get_free_variable

Purpose Returns the current value of a free variable of the RTC6.

Function
signature

uint32_t slsc_ctrl_get_free_variable(size_t Handle, uint32_t Number, uint32_t* Value);

Argument(s) Handle Handle to a syncAXIS control instance.

Number Number of the free variable on the RTC6 to be queried.
Allowed value range: [0…7].
Only the three least significant bits are evaluated.

Value Value of the free variable currently set on the RTC6.
Returned parameter value: pointer.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • In simulation mode, slsc_ctrl_get_free_variable, slsc_ctrl_set_free_variable, as well
as slsc_list_set_free_variable have no effect.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• slsc_ctrl_get_free_variable is a direct implementation of the RTC6 command
get_free_variable in syncAXIS control. However, get_free_variable does not provide
the argument Value.

• The functions for free variables (slsc_ctrl_set_free_variable,
slsc_list_set_free_variable and slsc_ctrl_get_free_variable) can be used, for example,
to determine and count increments (within Jobs).

• For further information on free variables, refer to the RTC6 Manual, Chapter 6.9.1 ”Free
Variables”, page 134.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.2.

References slsc_ctrl_set_free_variable, slsc_list_set_free_variable

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

190

innovators for industry

Name of the
function

slsc_ctrl_get_job_characteristic

Purpose Returns – for a specified Job-ID – the value of a Job characteristic (“Key“, see enum
slsc_JobCharacteristic) which has been calculated by the Trajectory planning.

Function
signature

uint32_t slsc_ctrl_get_job_characteristic(size_t Handle, size_t JobID, slsc_JobCharacteristic
Key, double* Value);

Argument(s) Handle Handle to a syncAXIS control instance.

JobID Job-ID. Is returned by slsc_list_begin*.

Key See enum slsc_JobCharacteristic.

Value Returned parameter value: pointer.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_ctrl_get_job_characteristic requires that the status of the specified Job-ID is at
least “Calculation: Finished” (see Figure 12, page 43). Otherwise, the return value
indicates that Bit #06 is set (UnplausibleOrUnknownParameter).

• slsc_ctrl_get_job_characteristic functions even without activated file output
(DisableFileOutput).

• With slsc_ctrl_get_job_characteristic the last 10 calculated Job-IDs can be queried.

• slsc_ctrl_get_job_characteristic is intended to evaluate the effect of parameter value
permutations (in simulation mode) by algorithms (that is, to automate parameter value
optimization)

• Only with short Job-IDs (not quantifiable more precisely; due to the prerequisite
mentioned in the first list bullet), slsc_ctrl_get_job_characteristic can also be used to
implement confirmation messages in a GUI, that is, if the Trajectory planning calcu-
lation results (for example, max control values for the positioning stage) exceed defined
limits (for example, “…do you really want to execute Job…”).

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

191

innovators for industry

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// What is StagePosX, StagePosY in the Job
size_t Handle; // from above somewhere
double Value0 = 0; // init variable for 1st key
double Value1 = 0; // init variable for 2nd key
size_t JobID = ; // received by list_begin()
slsc_ctrl_get_job_characteristic(Handle, JobID,
slsc_JobCharacteristic::slsc_JobCharacteristic_StagePosX, &Value0);
slsc_ctrl_get_job_characteristic(Handle, JobID,
slsc_JobCharacteristic::slsc_JobCharacteristic_StagePosY, &Value1);
// Value0 contains now the max. X position calculated for the Stage
// Value1 contains now the max. Y position calculated for the Stage

Version info Available as of syncAXIS-DLL V0.11.0.

References –

Name of the
function

slsc_ctrl_get_job_characteristic

Name of the
function

slsc_ctrl_get_scan_device_position

Purpose Returns the set position or actual position of the specified scan device (scan head).

Function
signature

uint32_t slsc_ctrl_get_scan_device_position(size_t Handle, slsc_ScanDevice ScanDevice,
slsc_PositionType Type, double* Position);

Argument(s) Handle Handle to a syncAXIS control instance.

ScanDevice See enum slsc_ScanDevice.

Type See enum slsc_PositionType.

Position Returned parameter value: Pointer to an array of dimension 2.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.0.

References slsc_ctrl_get_stage_position

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

192

innovators for industry

Name of the
function

slsc_ctrl_get_simulation_filename

Purpose Deprecated.

For querying simulation file names with syncAXIS-DLL V1.2.
As of syncAXIS-DLL  V1.3.0, slsc_ctrl_get_syncaxis_simulation_filename must be used!

Function
signature

uint32_t slsc_ctrl_get_simulation_filename(size_t Handle, size_t JobID, slsc_ScanDevice
ScanDevice, char* SimulationFileName, size_t FileNameBufSize);

Argument(s) Handle Handle to a syncAXIS control instance.

JobID Job-ID. Is returned by slsc_list_begin*.

ScanDevice See enum slsc_ScanDevice. The specified scan device must be
entered in syncAXISConfig.xml.

SimulationFileName Returned parameter value: pointer to a char array. The char array must
have been allocated by users previously.
Forwards the simulation file name.

FileNameBufSize Character count of the char array allocated to SimulationFileName.
Must be at least 49 for single digit Job-IDs.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_ctrl_get_simulation_filename is only useful with syncAXIS-DLL V1.2 because a
separate simulation file is created yet for each individual scan device. File name
convention in V1.2:
“Simulation_ID_<Job-ID>_<scan device>_TS_<13 digits>.txt”
[TS = Time Stamp; *_<scan device>* does not exist in  V1.1].
Example: Simulation_ID_1_ScanDevice2_TS_1546938743472.txt.

• With syncAXIS-DLL  V1.3.0, only one simulation file is generated which contains the
data of the individual scan devices.

Code example –

Version info Available as of syncAXIS-DLL V1.2.2…V1.2.6.

References slsc_ctrl_get_syncaxis_simulation_filename

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

193

innovators for industry

Name of the
function

slsc_ctrl_get_stage_position

Purpose Returns the set position or actual position of the positioning stage.

Function
signature

uint32_t slsc_ctrl_get_stage_position(size_t Handle, slsc_PositionType Type, double* Position);

Argument(s) Handle Handle to a syncAXIS control instance.

Type See enum slsc_PositionType.

Position Returned parameter value: Pointer to an array of dimension 2.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.0.

References slsc_ctrl_get_scan_device_position

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

194

innovators for industry

Name of the
function

slsc_ctrl_get_syncaxis_simulation_filename

Purpose Only in simulation mode! Returns the corresponding simulation file name for a specified
Job-ID.

Function
signature

uint32_t slsc_ctrl_get_syncaxis_simulation_filename(size_t Handle, size_t JobID, char*
SimulationFileName, size_t FileNameBufSize);

Argument(s) Handle Handle to a syncAXIS control instance.

JobID Job-ID. Is returned by slsc_list_begin*.

SimulationFileName Returned parameter value: pointer to a char array. The char array must
have been allocated by users previously.
Forwards the simulation file name.

FileNameBufSize Character count of the char array allocated to SimulationFileName.
Must be at least 37 for single digit Job-IDs.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_ctrl_get_syncaxis_simulation_filename replaces
slsc_ctrl_get_simulation_filename.

• slsc_ctrl_get_syncaxis_simulation_filename requires the simulation mode to be
active. Otherwise, the return value indicates that Bit #11 is set
(NotAllowedInCurrentMode).

• slsc_ctrl_get_syncaxis_simulation_filename requires that the status of the specified
Job-ID is at least “Calculation: Finished” (see Figure 12, page 43). Otherwise, the
return value indicates that Bit #06 is set (UnplausibleOrUnknownParameter).

• slsc_ctrl_get_syncaxis_simulation_filename requires that the file output is switched
on: <cfg:DisableFileOutput>false</cfg:DisableFileOutput>. Otherwise, the return value
indicates that Bit #06 is set (UnplausibleOrUnknownParameter).

• In syncAXIS control  V1.3, the following convention applies to simulation file names:
“Simulation_ID_<JobID>_TS_<13 Ziffern>.txt“ [TS = Time Stamp].
Example: Simulation_ID_1_TS_1546938743472.txt.

• With slsc_ctrl_get_syncaxis_simulation_filename the last 10 calculated Job-IDs can
be queried.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.3.0.

References slsc_ctrl_get_simulation_filename

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

195

innovators for industry

Name of the
function

slsc_ctrl_get_value

Purpose Returns the present value of the specified signals at the specified axis.

Function
signature

uint32_t slsc_ctrl_get_value(size_t Handle, size_t AxisIndex,
slsc_MeasurementSignal Signal, double* Value);

Argument(s) Handle Handle to a syncAXIS control instance.

AxisIndex 0: Axis X of scan head

1: Axis Y of scan head

2: Axis X of positioning stage

3: Axis Y of positioning stage

Signal See enum slsc_MeasurementSignal.

Value Returned parameter value: pointer.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• Do not use slsc_ctrl_get_value to query set positions and actual positions. For this
purpose, slsc_ctrl_get_scan_device_position and slsc_ctrl_get_stage_position are
available (as of syncAXIS-DLL V1.2.0).

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

Latest change with syncAXIS-DLL V1.1.0: data type of AxisIndex, Signal.

References slsc_ctrl_get_scan_device_position, slsc_ctrl_get_stage_position

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

196

innovators for industry

Name of the
function

slsc_ctrl_is_list_input_buffer_full

Purpose Checks whether the syncAXIS-DLL Input buffer is full (and therefore, cannot accept an addi-
tional Job function (slsc_list_*) at the moment).

Function
signature

uint32_t slsc_ctrl_is_list_input_buffer_full(size_t Handle, bool* Flag);

Argument(s) Handle Handle to a syncAXIS control instance.

Flag Returned parameter value: pointer.
true: The Input buffer is full.
false: The Input buffer is not full.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The Input buffer has a limited intake capacity (not directly quantifiable) for
Job functions (slsc_list_*). Prior to send off a Job function (slsc_list_*),
slsc_ctrl_is_list_input_buffer_full can be used to check whether the Input buffer is
receptive (Flag false). If a Job function (slsc_list_*) is submitted and the Input buffer is
full, its return value indicates that Bit #04 is set (BUFFER_FULL).

• If the Input buffer is full, then a sent off Job function (slsc_list_*) is not executed. In
the process, no exception is thrown!

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

197

innovators for industry

Name of the
function

slsc_ctrl_laser_signal_off

Purpose Only in Mode “Manual Positioning“:
Switches the laser off immediately.

Function
signature

uint32_t slsc_ctrl_laser_signal_off(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_ctrl_laser_signal_off is intended for direct laser control in combination with
slsc_ctrl_laser_signal_on.

• slsc_ctrl_laser_signal_off is only accepted in Mode “Manual Positioning“.
Otherwise, the return value indicates that Bit #11 is set (NotAllowedInCurrentMode).

• See also Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.0.

References slsc_ctrl_laser_signal_on

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

198

innovators for industry

Name of the
function

slsc_ctrl_laser_signal_on

Purpose Only in Mode “Manual Positioning“:
Switches the laser on immediately.

Function
signature

uint32_t slsc_ctrl_laser_signal_on(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_ctrl_laser_signal_on is intended for direct laser control in combination with
slsc_ctrl_laser_signal_off, for example, with adjustments and alignments.

• The laser is also switched off, if
– the syncAXIS control instance is destroyed
– the Operation mode is changed

• slsc_ctrl_laser_signal_on is only accepted in Mode “Manual Positioning“.
Otherwise, the return value indicates that Bit #11 is set (NotAllowedInCurrentMode).

• Caution! Make sure that laser safety is ensured in the entire system.

• See also Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.0.

References slsc_ctrl_laser_signal_off

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

199

innovators for industry

Name of the
function

slsc_ctrl_move_scanner_abs

Purpose Only in Mode “Manual Positioning“: Moves all scan devices to the specified position with
jump speed (starting from the current position).

Function
signature

uint32_t slsc_ctrl_move_scanner_abs(size_t Handle, const double* Position);

Argument(s) Handle Handle to a syncAXIS control instance.

Position Pointer to an array of dimension 2.
Target position in absolute (not relative) coordinates. In mm.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_ctrl_move_scanner_abs is only accepted in Mode “Manual Positioning“.
Otherwise, the return value indicates that Bit #11 is set (NotAllowedInCurrentMode).

• slsc_ctrl_move_stage_abs and slsc_ctrl_move_scanner_abs switch off the laser
(“actively”) before the movement starts.

• By slsc_ctrl_move_scanner_abs and slsc_ctrl_move_stage_abs (which are similar to
the RTC6 command goto_xy), it is possible to move the galvanometer scanners in the
scan head and the positioning stage independently from each other.

• slsc_ctrl_move_scanner_abs moves all scan devices to the specified position even in
Multi-Head systems.

• See also Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.0.

References slsc_ctrl_move_stage_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

200

innovators for industry

Name of the
function

slsc_ctrl_move_stage_abs

Purpose Only in Mode “Manual Positioning“: Moves the positioning stage to the specified position
with the dynamics (acceleration and jerk) set by the ACS API (starting from the current
position).

Function
signature

uint32_t slsc_ctrl_move_stage_abs(size_t Handle, const double* Position,
double Speed, double Timeout);

Argument(s) Handle Handle to a syncAXIS control instance.

Position Pointer to an array of dimension 2.
Target position in absolute (not relative) coordinates. In mm.

Speed Max. velocity of the positioning stage. In mm/s.

Timeout Time after which this function should have returned at the latest. In s.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_ctrl_move_stage_abs is only accepted in Mode “Manual Positioning“.
Otherwise, the return value indicates that Bit #11 is set (NotAllowedInCurrentMode).

• slsc_ctrl_move_stage_abs and slsc_ctrl_move_scanner_abs switch off the laser
(“actively“) before the movement starts.

• This safety feature ensures that the laser cannot be on uncontrolled.

• Caution! A moving positioning stage poses mechanical hazards. There are risks of
injuries to fingers and hands from crushing. Make sure that all bystanders keep suffi-
cient distance to the appliance during execution.

• By slsc_ctrl_move_scanner_abs and slsc_ctrl_move_stage_abs (which are similar to
the RTC6 command goto_xy), it is possible to move the galvanometer scanners in the
scan head and the positioning stage independently from each other.

• Sends an ACS point-to-point motion command for the selected positioning stage
(see slsc_cfg_select_stage) to ACS Motion Controller via TCP/IP.

• See also Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

• Caution! Make sure that the specified Speed value is within the permissible range,
see also Chapter 2.2 ”About the SAFE Use of syncAXIS control – General Approach”,
page 18.

• The Timeout value specifies after what time slsc_ctrl_move_stage_abs should have
returned at the latest (typical Timeout value: several seconds).
After this time has expired the return value indicates that Bit #13 is set (Timeout).

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.0.

References slsc_ctrl_move_scanner_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

201

innovators for industry

Name of the
function

slsc_ctrl_refresh_correction_file

Purpose Immediately transfers a correction file to the RTC6 board.

Function
signature

uint32_t slsc_ctrl_refresh_correction_file(size_t Handle, uint32_t CorrectionFileIndex);

Argument(s) Handle Handle to a syncAXIS control instance.

CorrectionFileIndex Index of the correction file to be to be transferred to the RTC6 board
(correction files are specified in the syncAXISConfig.xml; see also
Section ”Correction File-related Functions”, page 99).
Allowed values: 0…3.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Prerequisite for slsc_ctrl_refresh_correction_file (just like
slsc_ctrl_select_correction_file) is an execution state slsc_ExecState_Idle = 1 or
slsc_ExecState_ReadyForExecution = 1
(to be queried by slsc_ctrl_get_exec_state).

• slsc_ctrl_select_correction_file selects a correction file which is already present on the
RTC6 board. In contrast, slsc_ctrl_refresh_correction_file immediately transfers a
correction file to the RTC6 board (without the need to destroy/recreate the
syncAXIS control instance). See also Section ”Correction File-related Functions”,
page 99.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.0.

References slsc_ctrl_select_correction_file

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

202

innovators for industry

Name of the
function

slsc_ctrl_select_correction_file

Purpose To specify a correction file, which is to be used immediately.

Function
signature

uint32_t slsc_ctrl_select_correction_file(size_t Handle, uint32_t CorrectionFileIndex);

Argument(s) Handle Handle to a syncAXIS control instance.

CorrectionFileIndex Index of the correction file to be used (correction files are specified
in the syncAXISConfig.xml; see also Section ”Correction File-related
Functions”, page 99).
Allowed values: 0…3.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Prerequisite for slsc_ctrl_select_correction_file is an execution state
slsc_ExecState_Idle = 1 or slsc_ExecState_ReadyForExecution = 1
(to be queried by slsc_ctrl_get_exec_state).

• See also Section ”Correction File-related Functions”, page 99.

• See also XML tag CorrectionFilePath.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

203

innovators for industry

Name of the
function

slsc_ctrl_set_free_variable

Purpose Sets the value of a free variable on the RTC6.

Function
signature

uint32_t slsc_ctrl_set_free_variable(size_t Handle, uint32_t Number, uint32_t Value);

Argument(s) Handle Handle to a syncAXIS control instance.

Number Number of the free variable on the RTC6 to be set.
Allowed value range: [0…7].
Only the three least significant bits are evaluated.

Value Value of the free variable to be set on the RTC6.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • In simulation mode, slsc_ctrl_get_free_variable, slsc_ctrl_set_free_variable, as well
as slsc_list_set_free_variable have no effect.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• slsc_ctrl_set_free_variable is a direct implementation of the RTC6 command
set_free_variable in syncAXIS control.

• The functions for free variables (slsc_ctrl_set_free_variable,
slsc_list_set_free_variable and slsc_ctrl_get_free_variable) can be used, for example,
to determine and count increments (within Jobs).

• For further information on free variables, refer to the RTC6 Manual, Chapter 6.9.1 ”Free
Variables”, page 134.

• The corresponding Job function (slsc_list_*) of slsc_ctrl_set_free_variable is
slsc_list_set_free_variable.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.2.

References slsc_ctrl_get_free_variable, slsc_list_set_free_variable

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

204

innovators for industry

Name of the
function

slsc_ctrl_set_laser_pulses

Purpose Defines the output period and the pulse lengths for the laser signals LASER1 and LASER2
for “laser active” operation of the RTC6 board.

Function
signature

uint32_t slsc_ctrl_set_laser_pulses(size_t Handle, double HalfPeriod, double PulseLength);

Argument(s) Handle Handle to a syncAXIS control instance.

HalfPeriod Half of the output period. In s.
Allowed value range: [0…67].

PulseLength Pulse length of the laser signals LASER1 and LASER2. In s.
Allowed value range: [0…67].

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • In simulation mode, slsc_ctrl_set_laser_pulses and slsc_list_set_laser_pulses have no
effect.

• If HalfPeriod and/or PulseLength have the value 0, no laser signals are outputted. Negative
values are rejected. Then, the return value indicates that Bit #06 is set
(UnplausibleOrUnknownParameter).

• With PulseLength  2 × HalfPeriod, the laser remains on all the time.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• slsc_ctrl_set_laser_pulses is rather similar to the RTC6 command
set_laser_pulses_ctrl. However, the syncAXIS control function
slsc_ctrl_set_laser_pulses is not always accepted (for example, when a Job is being
executed).

• slsc_ctrl_set_laser_pulses and slsc_list_set_laser_pulses are provided for those
Sky Writings who (due to the laser they use) cannot use the “Automatic Laser Control“
to achieve equidistant spot distances and instead want to influence the pulse output
via HalfPeriod and PulseLength.

• HalfPeriod and PulseLength change what has been set during initialization (by the attri-
butes of the same name in syncAXISConfig.xml-tag <cfg:LaserOutput Unit=“s“ HalfPeriod=“…“
PulseLength=“…“ />).

• If the “Automatic Laser Control“ is active and SpotDistance is an “ActiveChannel”, see
Chapter 2.9.2 ”Definition of the Channels and ActiveChannel”, page 48, then:
– HalfPeriod is not effective
– PulseLength is effective (that is, pulse lengths of laser signal LASER1 and LASER2 are

changed)

• The corresponding Job function (slsc_list_*) of slsc_ctrl_set_laser_pulses is
slsc_list_set_laser_pulses.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.4.

References slsc_list_set_laser_pulses

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

205

innovators for industry

Name of the
function

slsc_ctrl_start_execution

Purpose Tries to start the execution of a Job by the Execution Layer.

Function
signature

uint32_t slsc_ctrl_start_execution(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Prerequisite for slsc_ctrl_start_execution: the execution status must be
slsc_ExecState_ReadyForExecution (to be queried by slsc_ctrl_get_exec_state).

• slsc_ctrl_start_execution only affects the oldest Job in the Job queue, which has not
been executed yet and with status “Transfer: In progress (Enough loaded = yes)”.
See Figure 13, page 44.

• It is immediately (!) tried to start the execution. However, the time to the actual
execution start cannot be quantified.

• Caution! Make sure that laser safety is ensured in the entire system.

• Caution! A moving positioning stage poses mechanical hazards. There are risks of
injuries to fingers and hands from crushing. Make sure that all bystanders keep suffi-
cient distance to the appliance during execution.

• MasterSlaveSynchronizer.exe users only, see “syncAXIS Master-Slave-
Synchronizer” Manual: If several RTC6 boards have been configured for a synchronous
list start by calling the –ConnectExternalStartStop option, then the list execution start
triggered by slsc_ctrl_start_execution is also forwarded to the
syncAXIS control instances on the other RTC6 boards.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_ctrl_stop, slsc_ctrl_stop_controlled

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

206

innovators for industry

Name of the
function

slsc_ctrl_stop

Purpose Cancels the execution of the current Job uncontrolled and immediately by a direct access
to the RTC6 board (“Emergency stop”).

Function
signature

slsc_ctrl_stop(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_ctrl_stop is designed to be an “emergency stop” only. slsc_ctrl_stop_controlled
is supposed to be more hardware-friendly.

• See Section ”Comparison of slsc_ctrl_stop_controlled and slsc_ctrl_stop”, page 97.

• The syncAXIS control instance operation status immediately changes to “red”. The
syncAXIS control instance must be initialized again.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_ctrl_start_execution, slsc_ctrl_stop_controlled

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

207

innovators for industry

Name of the
function

slsc_ctrl_stop_controlled

Purpose Cancels the execution of the current Job controlled and inserts a compensation movement
for deceleration.

Function
signature

slsc_ctrl_stop_controlled(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • After the slsc_ctrl_stop_controlled call the RTC6 board is still processing already
loaded RTC6 micro vector commands in its list memory. Therefore, it may take up to
30 s until the actual Job execution end. Afterwards the compensation movement for
deceleration is executed. During this entire time, slsc_ctrl_get_exec_state returns
“slsc_ExecState_Executing” .

• After the compensation movement, the syncAXIS control instance operation status
changes to “red”. The syncAXIS control instance must be initialized again.

• See Section ”Comparison of slsc_ctrl_stop_controlled and slsc_ctrl_stop”, page 97.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_ctrl_start_execution, slsc_ctrl_stop

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

208

innovators for industry

Name of the
function

slsc_ctrl_unfollow

Purpose The specified syncAXIS control instance temporarily releases the positioning stage. Then, it
can be controlled externally (for example, by a non-syncAXIS control-based user program).

Function
signature

uint32_t slsc_ctrl_unfollow(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_ctrl_unfollow automatically puts the specified syncAXIS control instance into
Mode “Manual Positioning“, see also Chapter 2.12 ”About the Mode “Manual
Positioning“”, page 70.

• slsc_ctrl_unfollow is similar to slsc_cfg_release_stage (deprecated) but faster.
Furthermore, syncAXIS-DLL-internal Job planning is not interrupted and already calcu-
lated Jobs are not lost.

• The complementary function of slsc_ctrl_unfollow is slsc_ctrl_follow.

• slsc_ctrl_unfollow must precede slsc_ctrl_follow.

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.0.7.

References slsc_ctrl_follow

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

209

innovators for industry

Name of the
function

slsc_ctrl_write_analog_x

Purpose Only in Mode “Manual Positioning“:
Writes a output value to the 12-Bit-analog output port ANALOG OUT1 or ANALOG OUT2
of all RTC6 boards.

Function
signature

uint32_t slsc_ctrl_write_analog_x(size_t Handle, slsc_AnalogOutput Channel,
double Value);

Argument(s) Handle Handle to a syncAXIS control instance.

Channel Analog output port ANALOG OUT1 or ANALOG OUT2 (“channel”).
=1: ANALOG OUT1.
=2: ANALOG OUT2.
Allowed value range: [1, 2]. See enum slsc_AnalogOutput.

Value Output value at the ANALOG OUT1 or ANALOG OUT2 analog output port.
Value = 0 corresponds to an output value of 0 V.
Value = 1 corresponds to an output value of 10 V.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The ANALOG OUT1 signal is outputted with
– RTC6 PCI Express Boards (as RTC5 boards): LASER connector, pin 08

• The ANALOG OUT2 signal is outputted with
– RTC6 PCI Express Boards (as RTC5 boards): LASER connector, pin 15, as well as

MARKING ON THE FLY socket connector, pin 14

• slsc_ctrl_write_analog_x is not accepted, when a Job is currently being executed.
Then, the return value indicates that Bit #03 is set (NotAllowedInExecuting).

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• Related RTC6 command: write_da_x.

• The corresponding Job function (slsc_list_*) of slsc_ctrl_write_analog_x is
slsc_list_write_analog_x.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.0.

References slsc_list_write_analog_x

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

210

innovators for industry

Name of the
function

slsc_ctrl_write_digital_out

Purpose Only in Mode “Manual Positioning“:
Writes a 16-bit output value to the 16-bit digital output port
DIGITAL OUT 0…DIGITAL OUT 15 of all RTC6 boards.

Function
signature

uint32_t slsc_ctrl_write_digital_out(size_t Handle, uint16_t Value);

Argument(s) Handle Handle to a syncAXIS control instance.

Value 16-bit output value (DIGITAL OUT0…DIGITAL OUT15) at the 16-bit digital
output port.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The DIGITAL OUT 0…DIGITAL OUT 15 signal is outputted with
– RTC6 PCI Express Boards (as RTC5 boards): EXTENSION 1 socket connector,

pin 01…pin 31 (odd-numbered pins only)

• slsc_ctrl_write_digital_out is not accepted, when a Job is currently being executed.
Then, the return value indicates that Bit #03 is set (NotAllowedInExecuting).

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• Related RTC6 command: write_io_port.

• The corresponding Job function (slsc_list_*) of slsc_ctrl_write_digital_out is
slsc_list_write_digital_out.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.0.

References slsc_list_write_digital_out

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

211

innovators for industry

Name of the
function

slsc_ctrl_write_digital_out_mask

Purpose Only in Mode “Manual Positioning“!
Writes only those bits of the Value-values to the 16-bit digital output port of all
RTC6 boards, which are specified in the user-defined bit mask (Mask parameter).

Function
signature

uint32_t slsc_ctrl_write_digital_out_mask(size_t Handle, uint16_t Value,
uint16_t Mask);

Argument(s) Handle Handle to a syncAXIS control instance.

Value 16-bit output value (DIGITAL OUT0 … DIGITAL OUT15).

Mask 16-bit mask (for DIGITAL OUT0 … DIGITAL OUT15).

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The DIGITAL OUT 0 … DIGITAL OUT 15 signal is outputted with
– RTC6 PCI Express Boards (as RTC5 boards): EXTENSION 1 socket connector,

pin 01…pin 31 (odd-numbered pins only)

• The parameter Mask defines which bits of the 16-bit digital output port (see
slsc_list_write_digital_out) are changed, whereas the argument Value defines how
they are changed. All bits of the 16-bit digital output port which are not set in Mask
remain unchanged. These are outputted again as previously.

• For Mask = 0xFFFF (“set all bits”), slsc_ctrl_write_digital_out_mask behaves like
slsc_ctrl_write_digital_out.

• slsc_ctrl_write_digital_out is not accepted, when a Job is currently being executed.
Then, the return value indicates that Bit #03 is set (NotAllowedInExecuting).

• For the Operation modes (see enum slsc_OperationMode) in which this and other
Control functions (slsc_ctrl_*) are allowed, see Figure 37, page 98.

• Related RTC6 command: write_io_port_mask.

• The corresponding Control function (slsc_list_*) of slsc_ctrl_write_digital_out_mask
is slsc_list_write_digital_out_mask.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.0.

References slsc_list_write_digital_out_mask

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

212

innovators for industry

Name of the
function

slsc_list_arc_abs

Purpose Defines a to-be-marked circular arc (not: elliptical arc) by absolute
coordinate values.

Function
signature

uint32_t slsc_list_arc_abs(size_t Handle, const double* Mid, const double* Target);

Argument(s) Handle Handle to a syncAXIS control instance.

Mid Pointer to an array of dimension 2.
Coordinates of a point on the circular arc between target point of the last
function and Target. In mm.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • A circular arc is defined by 3 points:
– First point = target of the last function.
– Mid = a point (on the circular arc) somewhere between first point and Target.
– Target = target point.

• A straight line is marked, if the 3 points result in (nearly) lying on a single line (are
collinear).

• Once slsc_list_arc_abs is executed, the laser is switched on, and then the circular arc is
scanned with a constant speed.
– If the marking is smaller than approx. the half scan head working field:

the applied speed is the currently set marking speed.
– If the marking is greater than approx. the half scan head working field:

the applied speed is reduced to a speed to a suiting positioning stage speed. This is
specified in the characteristic (see DynamicReductionFunction).

• slsc_list_arc_abs belongs to the “MIRROR” functions. Therefore, it is relevant for
setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• The corresponding slsc_list_para* function of slsc_list_arc_abs is
slsc_list_para_arc_abs.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target and Mid, see also page 268) of
slsc_list_arc_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Target
Mid

(target point of last function)

V
 =

 c
on

sta
nt

Target

Mid
(target point of last function)

V =
 co

ns
ta

nt

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

213

innovators for industry

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
double Target [2]; // Array of size 2
Target[0] = 1.0; // x value
Target[1] = 5.0; // y value
double Mid [2]; // Array of size 2
Mid[0] = 2.0; // x value
Mid[1] = 4.0; // y value
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_list_arc_abs(Handle, Mid, Target);

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_list_para_arc_abs

Name of the
function

slsc_list_arc_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

214

innovators for industry

Name of the
function

slsc_list_begin

Purpose Defines the beginning of a Job. Is 1 of 2 mandatory structure elements of a Job.

Function
signature

uint32_t slsc_list_begin(size_t Handle, size_t* JobID);

Argument(s) Handle Handle to a syncAXIS control instance.

JobID Returned parameter value: pointer.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • On execution of slsc_list_begin the Job-ID is automatically generated by the
syncAXIS control instance. It is consecutive and unique. See also Figure 13, page 44.

• The Job-ID is shared with event callbacks, see Section ”Functions for Registering
“Callback Events“”, page 81.

• slsc_list_begin also applies any configuration changes specified with
slsc_cfg_set_jump_speed and slsc_cfg_set_mark_speed.

• The starting point of a marking is the latest position of the positioning stage. The
deflection of the scan head mirrors is (0,0) (because slsc_cfg_initialize_from_file as
well as the very last Job function (slsc_list_*) positions the mirrors to (0,0).

• slsc_list_begin must not be followed by slsc_list_begin, slsc_list_begin_absolute or
slsc_list_begin_relative.
Otherwise, the return value indicates that Bit #07 is set (JobStructureNotValid).

• The first function of a Job must be slsc_list_begin, slsc_list_begin_absolute or
slsc_list_begin_relative. Otherwise, the return value indicates that Bit #07 is set
(JobStructureNotValid).

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_cfg_initialize_from_file, slsc_cfg_set_jump_speed, slsc_cfg_set_mark_speed,
slsc_list_end

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

215

innovators for industry

Name of the
function

slsc_list_begin_absolute

Purpose Defines (alternatively to slsc_list_begin, slsc_list_begin_relative) the beginning of a Job
to compensate a position change (performed in Mode “Manual Positioning“) of the
positioning stage caused by slsc_ctrl_move_stage_abs.
Important: slsc_list_begin_absolute may cause the user program to crash when starting
Jobs, if the end position of the preceding Job and the position specified with
slsc_list_begin_absolute do not match!

Function
signature

uint32_t slsc_list_begin_absolute(size_t Handle, size_t* JobID, const double* StartPosition);

Argument(s) Handle Handle to a syncAXIS control instance.

JobID Returned parameter value: pointer.

StartPosition Pointer to an array of dimension 2.
Coordinates of the positioning stage: position at the time when this Job
will be executed. In mm.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • On execution of or slsc_list_begin_absolute (just like with slsc_list_begin,
slsc_list_begin_relative) the Job-ID is automatically generated by the
syncAXIS control instance. It is consecutive and unique. See also Figure 13, page 44.

• The Job-ID is shared with event callbacks, see Section ”Functions for Registering
“Callback Events“”, page 81.

• slsc_list_begin_absolute (just like slsc_list_begin, slsc_list_begin_relative) also
applies any configuration changes specified with slsc_cfg_set_jump_speed and
slsc_cfg_set_mark_speed.

• slsc_list_begin_absolute allows a Job start at a different position than the current
positioning stage position or planned current positioning stage position. This allows a
fast positioning stage release, moving, and reacquiring even the
syncAXIS control instance is still calculating and preparing Jobs. Time saving possible,
but usage is more complicated.

• There is a check whether the actual positioning stage position at the time of execution
and the one specified at StartPosition do match. With a mismatch, the return value
indicates that Bit #12 is set (InvalidPosition; the positioning stage must then be moved
to the correct position, see also Chapter 2.12 ”About the Mode “Manual Positioning“”,
page 70).

• slsc_list_begin_absolute must not be followed by slsc_list_begin,
slsc_list_begin_absolute or slsc_list_begin_relative.
Otherwise, the return value indicates that Bit #07 is set (JobStructureNotValid).

• The first function of a Job must be slsc_list_begin, slsc_list_begin_absolute or
slsc_list_begin_relative. Otherwise, the return value indicates that Bit #07 is set
(JobStructureNotValid).

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

216

innovators for industry

Code example –

Version info Available as of syncAXIS-DLL V1.0.7.

References slsc_ctrl_follow, slsc_ctrl_unfollow

Name of the
function

slsc_list_begin_absolute

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

217

innovators for industry

Name of the
function

slsc_list_begin_module

Purpose Only allowed in simulation mode. To “precalculate a Job”.
Defines the beginning of a to-be-recorded Job (Module) which is closed as usual by
slsc_list_end.

Function
signature

uint32_t slsc_list_begin_module(size_t Handle, size_t* JobID, const double* StartPosition, const
char* ModuleFileName);

Argument(s) Handle Handle to a syncAXIS control instance.

JobID Returned parameter value: pointer.

StartPosition Pointer to an array of dimension 2.
Start position of the to-be-recorded Job. In mm.

ModuleFileName Absolute file path of the generated Module file (*.slm).
Pointer to a \0-terminated ANSI string, 1 byte per char.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_begin_module is only allowed in simulation mode. Otherwise, the
return value indicates that Bit #09 is set (NotAllowedInCurrentConfiguration).
Especially for this reason slsc_cfg_initialize_copy is made available.

• slsc_list_begin_module is allowed in Operation mode “ScannerOnly“, “StageOnly“,
“ScannerAndStage“.

• For slsc_list_begin_module, there is no corresponding Configuration function
(slsc_cfg_*).

• slsc_list_begin_module is similar to slsc_list_begin_absolute, therefore, see also
Comment(s) there.

• The start position for the job needs to be specified by StartPosition.

• See also Section ”Functions for “Modules””, page 95.

• For properties and content of Module files, see Section ”Module file”, page 66.

• The recording of the Module file starts already with the call of slsc_list_begin_module.
An additional function call, for example, slsc_ctrl_start_execution, is not necessary.

• The recording of the Module file is finished after Trajectory planning, see Figure 11,
page 41. slsc_cfg_register_callback_job_end_planned can be used to determine the
recording end time. A code example can be found in Figure 28, page 68.

• See Chapter 2.11 ”About Working with “Modules””, page 65.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example See Figure 28, page 68.

Version info Available as of syncAXIS-DLL V1.3.0.

References slsc_list_playback_module, slsc_cfg_initialize_copy

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

218

innovators for industry

Name of the
function

slsc_list_begin_relative

Purpose Defines (alternatively to slsc_list_begin) the beginning of a Job. Is 1 of 2 mandatory
structure elements of a Job.

Difference to slsc_list_begin: with ScannerAndStage and StageOnly, the position of the
positioning stage (it would have at the start of the execution of this Job) is calculated. Then,
it is added as offset to the coordinates in this Job (and this Job only!).

Function
signature

uint32_t slsc_list_begin_relative(size_t Handle, size_t* JobID);

Argument(s) Handle Handle to a syncAXIS control instance.

JobID Returned parameter value: pointer.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • On execution of or slsc_list_begin_relative (just like with slsc_list_begin) the Job-ID is
automatically generated by the syncAXIS control instance. It is consecutive and unique.
See also Figure 13, page 44.

• The Job-ID is shared with event callbacks, see Section ”Functions for Registering
“Callback Events“”, page 81.

• slsc_list_begin_relative (just like slsc_list_begin) also applies any configuration
changes specified with slsc_cfg_set_jump_speed and slsc_cfg_set_mark_speed.

• Like with slsc_list_begin, the starting point of the marking is also the current position
of the positioning stage. However, with ScannerAndStage and StageOnly, this position is
added (until slsc_list_end) to the coordinates in this Job (“offset”).
The deflection of the scan head mirrors is (0,0) (because slsc_cfg_initialize_from_file
as well as the very last Job function (slsc_list_*) positions the mirrors to (0,0).

// Pseudo code

slsc_list_begin_relative

// adds initial stage pos P0

// as offset to coordinates

slsc_list_jump_abs(0,10)

slsc_list_mark_abs(0,0)

slsc_list_end

+5–10 0

–10

+10

P2=P0+(0,0)=(5,0)

P1=P0+(0,10)=(5,10)

+P0

+P0

P0=(5,0)

// Pseudo code

slsc_list_begin

// does NOT add initial stage pos P0

// as offset to coordinates

slsc_list_jump_abs(0,10)

slsc_list_mark_abs(0,0)

slsc_list_end

+5–10 0

–10

+10

P2=(0,0)

P1=(0,10)

P0=(5,0)
x Position [mm]

y Position [mm]

x Position [mm]

y Position [mm]

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

219

innovators for industry

Comment(s)
(cont’d)

• slsc_list_begin_relative must not be followed by slsc_list_begin,
slsc_list_begin_absolute or slsc_list_begin_relative.
Otherwise, the return value indicates that Bit #07 is set (JobStructureNotValid).

• The first function of a Job must be slsc_list_begin, slsc_list_begin_absolute or
slsc_list_begin_relative. Otherwise, the return value indicates that Bit #07 is set
(JobStructureNotValid).

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.0.

References slsc_list_begin

Name of the
function

slsc_list_begin_relative

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

220

innovators for industry

Name of the
function

slsc_list_circle_2d_abs

Purpose Defines a circle (not: ellipse) by the absolute coordinate value of the circle center. The
parameter Angle determines the marking direction as well as the number of rotations (for
example, 3,25 × 2).

Function
signature

uint32_t slsc_list_circle_2d_abs(size_t Handle, const double* Center, double Angle);

Argument(s) Handle Handle to a syncAXIS control instance.

Center Pointer to an array of dimension2.
Coordinates (x value and y value) of the circle center. In mm.

Angle In rad. Positive values: marking is carried-out counterclockwise.
Negative values: marking is carried-out clockwise.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • A circle is defined by 2 points:
– First point = target of the last Mark function or Jump command.
– Center = center of the circle.

• Once slsc_list_circle_2d_abs is executed, the laser is switched on and then the circle is
scanned with a constant speed. The execution direction of the marking as well as the
number of rotations (for example, 3,25 × 2) is determined by the argument Angle.
Therefore, slsc_list_circle_2d_abs can used to mark circle arcs (alternatively to
slsc_list_arc_abs).

• slsc_list_circle_2d_abs belongs to the “MIRROR” functions. Therefore, it is relevant for
setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• The corresponding slsc_list_para* function of slsc_list_circle_2d_abs is
slsc_list_para_circle_2d_abs.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Center, see also page 268) of
slsc_list_circle_2d_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_list_arc_abs, slsc_list_para_circle_2d_abs

-An
gl

e

Center

+Angle

(target point of last function)

V
 =

 c
o

n
st

an
t

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

221

innovators for industry

Name of the
function

slsc_list_dashed_arc_abs

Purpose Like slsc_list_arc_abs, but the corresponding [*]dashed[*] Function.
Therefore, offers the arguments NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

Function
signature

uint32_t slsc_list_dashed_arc_abs(size_t Handle, const double* Mid, const double* Target, size_t
NSwitches, const double* LaserSwitches);

Argument(s) Handle Handle to a syncAXIS control instance.

Mid Pointer to an array of dimension 2.
Coordinates of a point on the circular arc between target point of the last
function and Target. In mm.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

NSwitches NSwitches is the size of the LaserSwitches array. It specifies how often the
laser is to be switched on/off along the marking pattern section. Minimum
value: 1. See Section ”[*]dashed[*] Functions”, page 91.

LaserSwitches LaserSwitches is an array of double values. The array specifies at which arc
length values (in mm) a switching of “Laser Standby” Operation and
“Laser Active” Operation has to occur.
See Section ”[*]dashed[*] Functions”, page 91.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • A circular arc is defined by 3 points:
– First point = target of the last function.
– Mid = a point (on the circular arc) somewhere between first point and Target.
– Target = target point.

• A straight line is marked, if the 3 points result in (nearly) lying on a single line (are
collinear).

• Once slsc_list_dashed_arc_abs is executed, the laser is switched on, and then the
circular arc is scanned with a constant speed.
– If the marking is smaller than approx. the half scan head working field:

the applied speed is the currently set marking speed.
– If the marking is greater than approx. the half scan head working field:

the applied speed is reduced to a speed to a suiting positioning stage speed. This is
specified in the characteristic (see DynamicReductionFunction).

• slsc_list_dashed_arc_abs belongs to the “MIRROR” functions. Therefore, it is relevant
for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

Target
Mid

(target point of last function)

V
 =

 c
on

sta
nt

Target

Mid
(target point of last function)

V =
 co

ns
ta

nt

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

222

innovators for industry

Comment(s)
(cont’d)

• The corresponding slsc_list_para* function of slsc_list_dashed_arc_abs is
slsc_list_para_dashed_arc_abs.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target and Mid, see also page 268) of
slsc_list_dashed_arc_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_list_arc_abs, slsc_list_para_dashed_arc_abs

Name of the
function

slsc_list_dashed_arc_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

223

innovators for industry

Name of the
function

slsc_list_dashed_circle_2d_abs

Purpose Like slsc_list_circle_2d_abs, but the corresponding [*]dashed[*] Function.
Therefore, offers the arguments NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

Function
signature

uint32_t slsc_list_dashed_circle_2d_abs(size_t Handle, const double* Center, double Angle,
size_t NSwitches, const double* LaserSwitches);

Argument(s) Handle Handle to a syncAXIS control instance.

Center Pointer to an array of dimension2.
Coordinates (x value and y value) of the circle center. In mm.

Angle In rad. Positive values: marking is carried-out counterclockwise.
Negative values: marking is carried-out clockwise.

NSwitches NSwitches is the size of the LaserSwitches array. It specifies how often the
laser is to be switched on/off along the marking pattern section. Minimum
value: 1. See Section ”[*]dashed[*] Functions”, page 91.

LaserSwitches LaserSwitches is an array of double values. The array specifies at which arc
length values (in mm) a switching of “Laser Standby” Operation and
“Laser Active” Operation has to occur.
See Section ”[*]dashed[*] Functions”, page 91.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • A circle is defined by 2 points:
– First point = target of the last Mark function or Jump command.
– Center = center of the circle.

• Once slsc_list_dashed_circle_2d_abs is executed, the laser is switched on and then the
circle is scanned with a constant speed. The execution direction of the marking as well
as the number of rotations (for example, 3,25 × 2) is determined by the argument
Angle. Therefore, slsc_list_circle_2d_abs can used to mark arcs (alternatively to
slsc_list_dashed_arc_abs).

• slsc_list_dashed_circle_2d_abs belongs to the “MIRROR” functions. Therefore, it is
relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

-An
gl

e

Center

+Angle

(target point of last function)

V
 =

 c
o

n
st

an
t

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

224

innovators for industry

Comment(s)
(cont’d)

• The corresponding slsc_list_para* function of slsc_list_dashed_circle_2d_abs is
slsc_list_para_dashed_circle_2d_abs.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Center, see also page 268) of
slsc_list_dashed_circle_2d_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_list_circle_2d_abs, slsc_list_para_dashed_circle_2d_abs

Name of the
function

slsc_list_dashed_circle_2d_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

225

innovators for industry

Name of the
function

slsc_list_dashed_mark_abs

Purpose Like slsc_list_mark_abs, but the corresponding [*]dashed[*] Function.
Therefore, offers the arguments NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

Function
signature

uint32_t slsc_list_dashed_mark_abs(size_t Handle, const double* Target, size_t NSwitches, const
double* LaserSwitches);

Argument(s) Handle Handle to a syncAXIS control instance.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

NSwitches NSwitches is the size of the LaserSwitches array. It specifies how often the
laser is to be switched on/off along the marking pattern section. Minimum
value: 1. See Section ”[*]dashed[*] Functions”, page 91.

LaserSwitches LaserSwitches is an array of double values. The array specifies at which arc
length values (in mm) a switching of “Laser Standby” Operation and
“Laser Active” Operation has to occur.
See Section ”[*]dashed[*] Functions”, page 91.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The behavior of mark vectors is defined in the configuration of the Trajectory planning,
see slsc_MarkConfig (for example, MarkSpeed) and slsc_GeometryConfig (for example,
MaxBlendRadius).

• slsc_list_dashed_mark_abs belongs to the “MIRROR” functions. Therefore, it is
relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• The corresponding slsc_list_para* function of slsc_list_dashed_mark_abs is
slsc_list_para_dashed_mark_abs.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target, see also page 268) of
slsc_list_dashed_mark_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_list_mark_abs, slsc_list_para_dashed_mark_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

226

innovators for industry

Name of the
function

slsc_list_end

Purpose Defines the end of a Job. Is 1 of 2 mandatory structure elements of a Job.

Function
signature

uint32_t slsc_list_end(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_end terminates the Job
– by a jump to the galvanometer scanner position 0,0 of the scan head
– without changing the position of the positioning stage. That is, the positioning stage

remains at the last set jump position or marking position.

• To subsequently move the positioning stage to a desired position:
– define a further Job
– set the Operation mode (by slsc_cfg_set_mode) to StageOnly and
– define a jump by slsc_list_jump_abs to the target position.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_cfg_set_mode, slsc_list_jump_abs, slsc_list_begin

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

227

innovators for industry

Name of the
function

slsc_list_jump_abs

Purpose Defines a jump by absolute coordinate values.

Function
signature

uint32_t slsc_list_jump_abs(size_t Handle, const double* Target);

Argument(s) Handle Handle to a syncAXIS control instance.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The behavior of jumps is defined in the configuration of the Trajectory planning, see
slsc_MarkConfig (for example, LaserMinOffTime and JumpSpeed).

• slsc_list_jump_abs belongs to the “MIRROR” functions. Therefore, it is relevant for
setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• The corresponding slsc_list_para* function of slsc_list_jump_abs is
slsc_list_para_jump_abs.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target, see also page 268) of slsc_list_jump_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
double Target [2]; // Array of size 2
Target[0] = 2.0; x value
Target[1] = 4.0; y value
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_list_jump_abs(Handle, Target);

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_list_para_jump_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

228

innovators for industry

Name of the
function

slsc_list_jump_abs_min_time

Purpose Like slsc_list_jump_abs. But additionally allows to specify a minimum duration for the
jump.

Function
signature

uint32_t slsc_list_jump_abs_min_time(size_t Handle, const double* Target, double
MinimalJumpTime);

Argument(s) Handle Handle to a syncAXIS control instance.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

MinimalJumpTime Minimum duration for the jump.
In s. Only positive values are allowed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The behavior of jumps is defined in the configuration of the Trajectory planning, see
slsc_MarkConfig (for example, LaserMinOffTime and JumpSpeed).

• slsc_list_jump_abs_min_time belongs to the “MIRROR” functions. Therefore, it is
relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• The corresponding slsc_list_para* function of slsc_list_jump_abs_min_time is
slsc_list_para_jump_abs_min_time.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target, see also page 268) of
slsc_list_jump_abs_min_time.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
double Target [2]; // Array of size 2
Target[0] = 2.0; x value
Target[1] = 4.0; y value
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_list_jump_abs_min_time(Handle, Target, 0.0001);

Version info Available as of syncAXIS-DLL V1.6.0.

References slsc_list_para_jump_abs_min_time

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

229

innovators for industry

Name of the
function

slsc_list_mark_abs

Purpose Defines a mark vector by absolute coordinate values.

Function
signature

uint32_t slsc_list_mark_abs(size_t Handle, const double* Target);

Argument(s) Handle Handle to a syncAXIS control instance.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The behavior of mark vectors is defined in the configuration of the Trajectory planning,
see slsc_MarkConfig (for example, MarkSpeed) and slsc_GeometryConfig (for example,
MaxBlendRadius).

• slsc_list_mark_abs belongs to the “MIRROR” functions. Therefore, it is relevant for
setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• The corresponding slsc_list_para* function of slsc_list_mark_abs is
slsc_list_para_mark_abs.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target, see also page 268) of slsc_list_mark_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
double Target [2]; // Array of size 2
Target[0] = 2.0;
Target[1] = 4.0;
// Handle: see Code example at slsc_cfg_initialize_from_file
slsc_list_mark_abs(Handle, Target);

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_list_para_mark_abs, slsc_list_wait_with_laser_on

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

230

innovators for industry

Name of the
function

slsc_list_multi_para_arc_abs

Purpose Like slsc_list_arc_abs. But offers the argument MultiParaTarget additionally, by which (per
“ActiveChannel”) a Ramp consisting of several sections is defined.

Function
signature

uint32_t slsc_list_multi_para_arc_abs(size_t Handle, const double* Mid, const double* Target,
const slsc_MultiParaTarget* MultiParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Mid Pointer to an array of dimension 2.
Coordinates of a point on the circular arc between target point of the last
function and Target. In mm.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

MultiParaTarget Pointer to an array of dimension 2 or 1, see Comment(s), page 250.
1 Ramp per “ActiveChannel” (there are at most 2 “ActiveChannel”)
consisting of several sections (ds), see structure slsc_MultiParaTarget.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • See slsc_list_para_arc_abs.

• slsc_list_multi_para_arc_abs belongs to the “MIRROR” functions. Therefore, it is
relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• At the beginning of the Ramp, the achieved end value of the previous
slsc_list_[para/multi_para]* function or (initially ParaTargetDefault) is used as start
value (Factor lp).

• If the sum of the sections (ds) is shorter than the arc lasts, then the Ramp value achieved
at the end of the last section value is kept unchanged until the end of the marking
vector.

• If the sum of the sections (ds) is longer than the arc lasts, then the Ramp is cancelled at
this point in time. The Ramp value achieved until then is used as start value for the
following Ramp.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• See also Section ”About Ramps”, page 53.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target and Mid, see also page 268) of
slsc_list_multi_para_arc_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example See Section ”About Ramps”, page 53.

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_list_para_arc_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

231

innovators for industry

Name of the
function

slsc_list_multi_para_circle_2d_abs

Purpose Like slsc_list_circle_2d_abs. But offers the argument MultiParaTarget additionally, by which
(per “ActiveChannel”) a Ramp consisting of several sections is defined.

Function
signature

uint32_t slsc_list_multi_para_circle_2d_abs(size_t Handle, const double* Center, double Angle,
const slsc_MultiParaTarget* MultiParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Center Pointer to an array of dimension 2.
Coordinates (x value and y value) of the circle center. In mm.

Angle In rad. Positive values: marking is carried-out counterclockwise.
Negative values: marking is carried-out clockwise.

MultiParaTarget Pointer to an array of dimension 2 or 1, see Comment(s), page 250.
1 Ramp per “ActiveChannel” (there are at most 2 “ActiveChannel”)
consisting of several sections (ds), see structure slsc_MultiParaTarget.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • See slsc_list_para_circle_2d_abs.

• slsc_list_multi_para_circle_2d_abs belongs to the “MIRROR” functions. Therefore, it
is relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• At the beginning of the Ramp, the achieved end value of the previous
slsc_list_[para/multi_para]* function or (initially ParaTargetDefault) is used as start
value (Factor lp).

• If the sum of the sections (ds) is shorter than the total arc length (Radius × Angle) lasts,
then the Ramp value achieved at the end of the last section value is kept unchanged
until the end of the marking vector.

• If the sum of the sections (ds) is longer than the total arc length (Radius × Angle) lasts,
then the Ramp is cancelled at this point in time. The Ramp value achieved until then is
used as start value for the following Ramp.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• See also Section ”About Ramps”, page 53.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Center, see also page 268) of
slsc_list_multi_para_circle_2d_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_list_para_circle_2d_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

232

innovators for industry

Name of the
function

slsc_list_multi_para_dashed_arc_abs

Purpose Like slsc_list_multi_para_arc_abs, but the corresponding [*]dashed[*] Function.
Therefore, offers the arguments NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

Function
signature

uint32_t slsc_list_multi_para_dashed_arc_abs(size_t Handle, const double* Mid, const double*
Target, size_t NSwitches, const double* LaserSwitches, const slsc_MultiParaTarget*
MultiParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Mid Pointer to an array of dimension 2.
Coordinates of a point on the circular arc between target point of the last
function and Target. In mm.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

NSwitches NSwitches is the size of the LaserSwitches array. It specifies how often the
laser is to be switched on/off along the marking pattern section.
Minimum value: 1. See Section ”[*]dashed[*] Functions”, page 91.

LaserSwitches LaserSwitches is an array of double values. The array specifies at which arc
length values (in mm) a switching of “Laser Standby” Operation and
“Laser Active” Operation has to occur.
See Section ”[*]dashed[*] Functions”, page 91.

MultiParaTarget Pointer to an array of dimension 2 or 1, see Comment(s), page 250.
1 Ramp per “ActiveChannel” (there are at most 2 “ActiveChannel”)
consisting of several sections (ds), see structure slsc_MultiParaTarget.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • See slsc_list_para_arc_abs.

• slsc_list_multi_para_dashed_arc_abs belongs to the “MIRROR” functions. Therefore,
it is relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time
when Output Signals are actually set”, page 45.

• At the beginning of the Ramp, the achieved end value of the previous
slsc_list_[para/multi_para]* function or (initially ParaTargetDefault) is used as start
value (Factor lp).

• If the sum of the sections (ds) is shorter than the arc lasts, then the Ramp value achieved
at the end of the last section value is kept unchanged until the end of the marking
vector.

• If the sum of the sections (ds) is longer than the arc lasts, then the Ramp is cancelled at
this point in time. The Ramp value achieved until then is used as start value for the
following Ramp.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

233

innovators for industry

Comment(s)
(cont’d)

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• See also Section ”About Ramps”, page 53.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target and Mid, see also page 268) of
slsc_list_multi_para_dashed_arc_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_list_para_arc_abs

Name of the
function

slsc_list_multi_para_dashed_arc_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

234

innovators for industry

Name of the
function

slsc_list_multi_para_dashed_circle_2d_abs

Purpose Like slsc_list_multi_para_circle_2d_abs, but the corresponding [*]dashed[*] Function.
Therefore, offers the arguments NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

Function
signature

uint32_t slsc_list_multi_para_dashed_circle_2d_abs(size_t Handle, const double* Center, double
Angle, size_t NSwitches, const double* LaserSwitches, const slsc_MultiParaTarget*
MultiParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Center Pointer to an array of dimension 2.
Coordinates (x value and y value) of the circle center. In mm.

Angle In rad. Positive values: marking is carried-out counterclockwise.
Negative values: marking is carried-out clockwise.

NSwitches NSwitches is the size of the LaserSwitches array. It specifies how often the
laser is to be switched on/off along the marking pattern section.
Minimum value: 1. See Section ”[*]dashed[*] Functions”, page 91.

LaserSwitches LaserSwitches is an array of double values. The array specifies at which arc
length values (in mm) a switching of “Laser Standby” Operation and
“Laser Active” Operation has to occur.
See Section ”[*]dashed[*] Functions”, page 91.

MultiParaTarget Pointer to an array of dimension 2 or 1, see Comment(s), page 250.
1 Ramp per “ActiveChannel” (there are at most 2 “ActiveChannel”)
consisting of several sections (ds), see structure slsc_MultiParaTarget.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • See slsc_list_para_circle_2d_abs.

• slsc_list_multi_para_dashed_circle_2d_abs belongs to the “MIRROR” functions.
Therefore, it is relevant for setting output signals, see Chapter 2.7.2 ”About the Point
in Time when Output Signals are actually set”, page 45.

• At the beginning of the Ramp, the achieved end value of the previous
slsc_list_[para/multi_para]* function or (initially ParaTargetDefault) is used as start
value (Factor lp).

• If the sum of the sections (ds) is shorter than the total arc length (Radius × Angle) lasts,
then the Ramp value achieved at the end of the last section value is kept unchanged
until the end of the marking vector.

• If the sum of the sections (ds) is longer than the total arc length (Radius × Angle) lasts,
then the Ramp is cancelled at this point in time. The Ramp value achieved until then is
used as start value for the following Ramp.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

235

innovators for industry

Comment(s)
(cont’d)

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• See also Section ”About Ramps”, page 53.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Center, see also page 268) of
slsc_list_multi_para_dashed_circle_2d_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_list_multi_para_circle_2d_abs

Name of the
function

slsc_list_multi_para_dashed_circle_2d_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

236

innovators for industry

Name of the
function

slsc_list_multi_para_dashed_mark_abs

Purpose Like slsc_list_multi_para_mark_abs, but the corresponding [*]dashed[*] Function.
Therefore, offers the arguments NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

Function
signature

uint32_t slsc_list_multi_para_dashed_mark_abs(size_t Handle, const double* Target, size_t
NSwitches, const double* LaserSwitches, const slsc_MultiParaTarget* MultiParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

NSwitches NSwitches is the size of the LaserSwitches array. It specifies how often the
laser is to be switched on/off along the marking pattern section.
Minimum value: 1. See Section ”[*]dashed[*] Functions”, page 91.

LaserSwitches LaserSwitches is an array of double values. The array specifies at which arc
length values (in mm) a switching of “Laser Standby” Operation and
“Laser Active” Operation has to occur.
See Section ”[*]dashed[*] Functions”, page 91.

MultiParaTarget Pointer to an array of dimension 2 or 1, see Comment(s), page 250.
1 Ramp per “ActiveChannel” (there are at most 2 “ActiveChannel”)
consisting of several sections (ds), see structure slsc_MultiParaTarget.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • See slsc_list_para_mark_abs.

• slsc_list_multi_para_dashed_mark_abs belongs to the “MIRROR” functions.
Therefore, it is relevant for setting output signals, see Chapter 2.7.2 ”About the Point
in Time when Output Signals are actually set”, page 45.

• At the beginning of the Ramp, the achieved end value of the previous
slsc_list_[para/multi_para]* function or (initially ParaTargetDefault) is used as start
value (Factor lp).

• If the sum of the sections (ds) is shorter than the mark vector length lasts, then the
Ramp value achieved at the end of the last section value is kept unchanged until the
end of the marking vector.

• If the sum of the sections (ds) is longer than the mark vector length lasts, then the Ramp
is cancelled at this point in time. The Ramp value achieved until then is used as start
value for the following Ramp.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

237

innovators for industry

Comment(s)
(cont’d)

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• See also Section ”About Ramps”, page 53.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target, see also page 268) of
slsc_list_multi_para_dashed_mark_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_list_multi_para_mark_abs

Name of the
function

slsc_list_multi_para_dashed_mark_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

238

innovators for industry

Name of the
function

slsc_list_multi_para_mark_abs

Purpose Like slsc_list_mark_abs. But offers the argument MultiParaTarget additionally, by which (per
“ActiveChannel”) a Ramp consisting of several sections is defined.

Function
signature

uint32_t slsc_list_multi_para_mark_abs(size_t Handle, const double* Target,
const slsc_MultiParaTarget* MultiParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

MultiParaTarget Pointer to an array of dimension 2 or 1, see Comment(s), page 250.
1 Ramp per “ActiveChannel” (there are at most 2 “ActiveChannel”)
consisting of several sections (ds), see structure slsc_MultiParaTarget.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • See slsc_list_para_mark_abs.

• slsc_list_multi_para_mark_abs belongs to the “MIRROR” functions. Therefore, it is
relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• At the beginning of the Ramp, the achieved end value of the previous
slsc_list_[para/multi_para]* function or (initially ParaTargetDefault) is used as start
value (Factor lp).

• If the sum of the sections (ds) is shorter than the mark vector length lasts, then the
Ramp value achieved at the end of the last section value is kept unchanged until the
end of the marking vector.

• If the sum of the sections (ds) is longer than the mark vector length lasts, then the Ramp
is cancelled at this point in time. The Ramp value achieved until then is used as start
value for the following Ramp.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• See also Section ”About Ramps”, page 53.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target, see also page 268) of
slsc_list_multi_para_mark_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_list_para_mark_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

239

innovators for industry

Name of the
function

slsc_list_para_arc_abs

Purpose Like slsc_list_arc_abs. But offers the argument ParaTarget additionally, by which a Ramp is
defined (in the working field, the value/s of one/two “ActiveChannel” is/are varied linearly).

Function
signature

uint32_t slsc_list_para_arc_abs(size_t Handle, const double* Mid, const double* Target, const
double* ParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Mid Pointer to an array of dimension 2.
Coordinates of a point on the circular arc between target point of the last
function and Target. In mm.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

ParaTarget Array of dimension 2 or 1, see Comment(s), page 250.
ParaTarget refers to the end of the following Ramp. Is used as Factor lp for
calculating the ActiveChannel values, see Section ”About how
ActiveChannel Values along a Contour are Calculated”, page 51.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Like with slsc_list_arc_abs – a circular arc is defined by 3 points:
– First point = target of the last function.
– Mid = a point (on the circular arc) somewhere between first point and Target.
– Target = target point.

• Like with slsc_list_arc_abs – a straight line is marked, if the 3 points result in (nearly)
lying on a single line (are collinear).

• Like with slsc_list_arc_abs – once slsc_list_para_arc_abs is executed, the laser is
switched on, and then the circular arc is scanned with a constant speed.
– If the marking is smaller than approx. the half scan head working field:

the applied speed is the currently set marking speed.
– If the marking is greater than approx. the half scan head working field:

the applied speed is reduced to a speed to a suiting positioning stage speed. This is
specified in the characteristic (see DynamicReductionFunction).

• slsc_list_para_arc_abs belongs to the “MIRROR” functions. Therefore, it is relevant for
setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

Target
Mid

(target point of last function)

V
 =

 c
on

sta
nt

Target

Mid
(target point of last function)

V =
 co

ns
ta

nt

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

240

innovators for industry

Comment(s)
(cont’d)

• Each slsc_list_[para/multi_para]* function works as its corresponding
slsc_list* function, if no “ActiveChannel” has been entered, see Section ”About
Automatically Controlling the Laser by syncAXIS control (“Automatic Laser Control“)”,
page 48.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target and Mid, see also page 268) of
slsc_list_para_arc_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_list_arc_abs, slsc_list_para_circle_2d_abs, slsc_list_para_disable,
slsc_list_para_enable, slsc_list_para_jump_abs, slsc_list_para_mark_abs

Name of the
function

slsc_list_para_arc_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

241

innovators for industry

Name of the
function

slsc_list_para_circle_2d_abs

Purpose Like slsc_list_circle_2d_abs. But offers the argument ParaTarget additionally, by which a
Ramp is defined (in the working field, the value/s of one/two “ActiveChannel” is/are varied
linearly).

Function
signature

uint32_t slsc_list_para_circle_2d_abs(size_t Handle, const double* Center, double Angle,
const double* ParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Center Pointer to an array of dimension 2.
Coordinates (x value and y value) of the circle center. In mm.

Angle In rad. Positive values: marking is carried-out counterclockwise.
Negative values: marking is carried-out clockwise.

ParaTarget Array of dimension 2 or 1, see Comment(s), page 250.
ParaTarget refers to the end of the following Ramp. Is used as Factor lp for
calculating the ActiveChannel values, see Section ”About how
ActiveChannel Values along a Contour are Calculated”, page 51.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Like with slsc_list_circle_2d_abs - the circle is defined by 2 points:
– First point = target of the last Mark function or Jump command.
– Center = center of the circle.

• Like with slsc_list_circle_2d_abs - once slsc_list_para_circle_2d_abs is executed, the
laser is switched on and then the circle is scanned with a constant speed. The execution
direction of the marking as well as the number of rotations (for example, 3,25 × 2) is
determined by the argument Angle.

• slsc_list_para_circle_2d_abs belongs to the “MIRROR” functions. Therefore, it is
relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• Each slsc_list_[para/multi_para]* function works as its corresponding
slsc_list* function, if no “ActiveChannel” has been entered, see Section ”About
Automatically Controlling the Laser by syncAXIS control (“Automatic Laser Control“)”,
page 48.

• Prior to slsc_list_para_circle_2d_abs, slsc_list_para_enable must have been called.
Otherwise, slsc_list_para_circle_2d_abs works as slsc_list_circle_2d_abs.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

-An
gl

e

Center

+Angle

(target point of last function)

V
 =

 c
o

n
st

an
t

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

242

innovators for industry

Comment(s)
(cont’d)

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Center, see also page 268) of
slsc_list_para_circle_2d_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_list_circle_2d_abs, slsc_list_para_arc_abs, slsc_list_para_disable,
slsc_list_para_enable, slsc_list_para_jump_abs, slsc_list_para_mark_abs

Name of the
function

slsc_list_para_circle_2d_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

243

innovators for industry

Name of the
function

slsc_list_para_dashed_arc_abs

Purpose Like slsc_list_para_arc_abs, but the corresponding [*]dashed[*] Function.
Therefore, offers the arguments NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

Function
signature

uint32_t slsc_list_para_dashed_arc_abs(size_t Handle, const double* Mid, const double* Target,
size_t NSwitches, const double* LaserSwitches, const double* ParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Mid Pointer to an array of dimension 2.
Coordinates of a point on the circular arc between target point of the last
function and Target. In mm.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

NSwitches NSwitches is the size of the LaserSwitches array. It specifies how often the
laser is to be switched on/off along the marking pattern section. Minimum
value: 1. See Section ”[*]dashed[*] Functions”, page 91.

LaserSwitches LaserSwitches is an array of double values. The array specifies at which arc
length values (in mm) a switching of “Laser Standby” Operation and
“Laser Active” Operation has to occur.
See Section ”[*]dashed[*] Functions”, page 91.

ParaTarget Array of dimension 2 or 1, see Comment(s), page 250.
ParaTarget refers to the end of the following Ramp. Is used as Factor lp for
calculating the ActiveChannel values, see Section ”About how
ActiveChannel Values along a Contour are Calculated”, page 51.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Like with slsc_list_arc_abs – a circular arc is defined by 3 points:
– First point = target of the last function.
– Mid = a point (on the circular arc) somewhere between first point and Target.
– Target = target point.

• Like with slsc_list_arc_abs – a straight line is marked, if the 3 points result in (nearly)
lying on a single line (are collinear).

• Like with slsc_list_arc_abs – once slsc_list_para_dashed_arc_abs is executed, the
laser is switched on, and then the circular arc is scanned with a constant speed.
– If the marking is smaller than approx. the half scan head working field:

the applied speed is the currently set marking speed.
– If the marking is greater than approx. the half scan head working field:

the applied speed is reduced to a speed to a suiting positioning stage speed. This is
specified in the characteristic (see DynamicReductionFunction).

Target
Mid

(target point of last function)

V
 =

 c
on

sta
nt

Target

Mid
(target point of last function)

V =
 co

ns
ta

nt

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

244

innovators for industry

Comment(s)
(cont’d)

• slsc_list_para_dashed_arc_abs belongs to the “MIRROR” functions. Therefore, it is
relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• Each slsc_list_[para/multi_para]* function works as its corresponding
slsc_list* function, if no “ActiveChannel” has been entered, see Section ”About
Automatically Controlling the Laser by syncAXIS control (“Automatic Laser Control“)”,
page 48.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target and Mid, see also page 268) of
slsc_list_para_dashed_arc_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_list_para_arc_abs

Name of the
function

slsc_list_para_dashed_arc_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

245

innovators for industry

Name of the
function

slsc_list_para_dashed_circle_2d_abs

Purpose Like slsc_list_para_circle_2d_abs, but the corresponding [*]dashed[*] Function.
Therefore, offers the arguments NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

Function
signature

uint32_t slsc_list_para_dashed_circle_2d_abs(size_t Handle, const double* Center, double Angle,
size_t NSwitches, const double* LaserSwitches, const double* ParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Center Pointer to an array of dimension 2.
Coordinates (x value and y value) of the circle center. In mm.

Angle In rad. Positive values: marking is carried-out counterclockwise.
Negative values: marking is carried-out clockwise.

NSwitches NSwitches is the size of the LaserSwitches array. It specifies how often the
laser is to be switched on/off along the marking pattern section. Minimum
value: 1. See Section ”[*]dashed[*] Functions”, page 91.

LaserSwitches LaserSwitches is an array of double values. The array specifies at which arc
length values (in mm) a switching of “Laser Standby” Operation and
“Laser Active” Operation has to occur.
See Section ”[*]dashed[*] Functions”, page 91.

ParaTarget Array of dimension 2 or 1, see Comment(s), page 250.
ParaTarget refers to the end of the following Ramp. Is used as Factor lp for
calculating the ActiveChannel values, see Section ”About how
ActiveChannel Values along a Contour are Calculated”, page 51.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Like with slsc_list_circle_2d_abs - the circle is defined by 2 points:
– First point = target of the last Mark function or Jump command.
– Center = center of the circle.

• Like with slsc_list_circle_2d_abs - once slsc_list_para_dashed_circle_2d_abs is
executed, the laser is switched on and then the circle is scanned with a constant speed.
The execution direction of the marking as well as the number of rotations (for example,
3,25 × 2) is determined by the argument Angle.

• slsc_list_para_dashed_circle_2d_abs belongs to the “MIRROR” functions. Therefore,
it is relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time
when Output Signals are actually set”, page 45.

• Each slsc_list_[para/multi_para]* function works as its corresponding
slsc_list* function, if no “ActiveChannel” has been entered, see Section ”About
Automatically Controlling the Laser by syncAXIS control (“Automatic Laser Control“)”,
page 48.

-An
gl

e

Center

+Angle

(target point of last function)

V
 =

 c
o

n
st

an
t

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

246

innovators for industry

Comment(s)
(cont’d)

• Prior to slsc_list_para_dashed_circle_2d_abs, slsc_list_para_enable must have been
called. Otherwise, slsc_list_para_dashed_circle_2d_abs works as
slsc_list_circle_2d_abs.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Center, see also page 268) of
slsc_list_para_dashed_circle_2d_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_list_para_circle_2d_abs

Name of the
function

slsc_list_para_dashed_circle_2d_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

247

innovators for industry

Name of the
function

slsc_list_para_dashed_mark_abs

Purpose Like slsc_list_para_dashed_mark_abs, but the corresponding [*]dashed[*] Function.
Therefore, offers the arguments NSwitches and LaserSwitches in addition, see Section
”[*]dashed[*] Functions”, page 91.

Function
signature

uint32_t slsc_list_para_dashed_mark_abs(size_t Handle, const double* Target, size_t NSwitches,
const double* LaserSwitches, const double* ParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

NSwitches NSwitches is the size of the LaserSwitches array. It specifies how often the
laser is to be switched on/off along the marking pattern section. Minimum
value: 1. See Section ”[*]dashed[*] Functions”, page 91.

LaserSwitches LaserSwitches is an array of double values. The array specifies at which arc
length values (in mm) a switching of “Laser Standby” Operation and
“Laser Active” Operation has to occur.
See Section ”[*]dashed[*] Functions”, page 91.

ParaTarget Array of dimension 2 or 1, see Comment(s), page 250.
ParaTarget refers to the end of the following Ramp. Is used as Factor lp for
calculating the ActiveChannel values, see Section ”About how
ActiveChannel Values along a Contour are Calculated”, page 51.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Like with slsc_list_mark_abs – the behavior of mark vectors is defined in the configu-
ration of the Trajectory planning, see slsc_MarkConfig (for example, MarkSpeed) and
slsc_GeometryConfig (for example, MaxBlendRadius).

• slsc_list_para_dashed_mark_abs belongs to the “MIRROR” functions. Therefore, it is
relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• Each slsc_list_[para/multi_para]* function works as its corresponding
slsc_list* function, if no “ActiveChannel” has been entered, see Section ”About
Automatically Controlling the Laser by syncAXIS control (“Automatic Laser Control“)”,
page 48.

• Prior to slsc_list_para_dashed_mark_abs, slsc_list_para_enable must have been
called. Otherwise, slsc_list_para_dashed_mark_abs works as slsc_list_mark_abs.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

248

innovators for industry

Comment(s)
(cont’d)

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target, see also page 268) of
slsc_list_para_dashed_mark_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_list_para_dashed_mark_abs

Name of the
function

slsc_list_para_dashed_mark_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

249

innovators for industry

Name of the
function

slsc_list_para_disable

Purpose Switches the processing of the arguments ParaTarget (of slsc_list_para* functions)
and MultiParaTarget (of slsc_list_multi_para* functions) off.

Function
signature

uint32_t slsc_list_para_disable(size_t Handle);

Argument(s) Handle Handle to a syncAXIS control instance.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • After calling slsc_list_para_disable, all slsc_list_[para/multi_para]*-functions work
like their corresponding slsc_list_*-functions.
All subsequent ParaTarget and MultiParaTarget values are set to 1 (Factor lp = 1) (which
means “no change“ for the output value/s of the ActiveChannel/s).

• The processing of the arguments ParaTarget (of slsc_list_para* functions) and
MultiParaTarget (of slsc_list_multi_para* functions) is switched back on by
slsc_list_para_enable.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_list_para_enable

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

250

innovators for industry

Name of the
function

slsc_list_para_enable

Purpose Switches the processing of the arguments ParaTarget (of slsc_list_para* functions)
and MultiParaTarget (of slsc_list_multi_para* functions) on.

Function
signature

uint32_t slsc_list_para_enable(size_t Handle, const double* ParaTargetDefault);

Argument(s) Handle Handle to a syncAXIS control instance.

ParaTargetDefault Array of dimension 2 or 1, see Comment(s).
Start value/s of the first Ramp.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The dimension of the array for the Ramp value should correspond to the number of
defined-as-active channels. In syncAXISConfig.xml under
<cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl> 

<cfg:ActiveChannel> there is
– 2× the tag <cfg:Channel> = 2 channels are defined as active:

Pointer to an array of dimension 2.
– 1× the tag<cfg:Channel> = 1 channel is defined as active:

Pointer to an array of dimension 1.
– 0× the tag <cfg:Channel> = no “ActiveChannel” is defined.

ParaTargetDefault is not evaluated!

• If slsc_list_para_enable is not called, all slsc_list_[para/multi_para]*-functions work
like their corresponding slsc_list*-functions. The same applies, if the processing of the
arguments ParaTarget (of slsc_list_para* functions) and MultiParaTarget (of
slsc_list_multi_para* functions) has been switched off by slsc_list_para_disable.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_list_para_disable

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

251

innovators for industry

Name of the
function

slsc_list_para_jump_abs

Purpose Like slsc_list_jump_abs. But offers the argument ParaTarget additionally, by which a Ramp
is defined (in the working field, the value/s of one/two “ActiveChannel” is/are varied
linearly).

Function
signature

uint32_t slsc_list_para_jump_abs(size_t Handle, const double* Target,
const double* ParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

ParaTarget Array of dimension 2 or 1, see Comment(s), page 250.
ParaTarget refers to the end of the following Ramp. Is used as Factor lp for
calculating the ActiveChannel values, see Section ”About how
ActiveChannel Values along a Contour are Calculated”, page 51.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Like with slsc_list_jump_abs – the behavior of jumps is defined in the configuration of
the Trajectory planning, see slsc_MarkConfig (for example, LaserMinOffTime and
JumpSpeed.

• slsc_list_para_jump_abs belongs to the “MIRROR” functions. Therefore, it is relevant
for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• Each slsc_list_[para/multi_para]* function works as its corresponding
slsc_list* function, if no “ActiveChannel” has been entered, see Section ”About
Automatically Controlling the Laser by syncAXIS control (“Automatic Laser Control“)”,
page 48.

• Prior to slsc_list_para_jump_abs, slsc_list_para_enable must have been called.
Otherwise, slsc_list_para_jump_abs works as slsc_list_jump_abs.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target, see also page 268) of
slsc_list_para_jump_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_list_jump_abs, slsc_list_para_arc_abs, slsc_list_para_circle_2d_abs,
slsc_list_para_disable, slsc_list_para_enable, slsc_list_para_mark_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

252

innovators for industry

Name of the
function

slsc_list_para_jump_abs_min_time

Purpose Like slsc_list_jump_abs_min_time. But offers the argument ParaTarget additionally, by
which a Ramp is defined (in the working field, the value/s of one/two “ActiveChannel” is/are
varied linearly).

Function
signature

uint32_t slsc_list_para_jump_abs_min_time(size_t Handle, const double* Target,
double MinimalJumpTime, const double* ParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

MinimalJumpTime Minimum duration for the jump.
In s. Only positive values are allowed.

ParaTarget Array of dimension 2 or 1, see Comment(s), page 250.
ParaTarget refers to the end of the following Ramp. Is used as Factor lp for
calculating the ActiveChannel values, see Section ”About how
ActiveChannel Values along a Contour are Calculated”, page 51.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Like with slsc_list_jump_abs_min_time – the behavior of jumps is defined in the
configuration of the Trajectory planning, see slsc_MarkConfig (for example,
LaserMinOffTime and JumpSpeed.

• slsc_list_para_jump_abs_min_time belongs to the “MIRROR” functions. Therefore, it
is relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• Each slsc_list_[para/multi_para]* function works as its corresponding
slsc_list* function, if no “ActiveChannel” has been entered, see Section ”About
Automatically Controlling the Laser by syncAXIS control (“Automatic Laser Control“)”,
page 48.

• Prior to slsc_list_para_jump_abs_min_time, slsc_list_para_enable must have been
called. Otherwise, slsc_list_para_jump_abs_min_time works as
slsc_list_jump_abs_min_time.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target, see also page 268) of
slsc_list_para_jump_abs_min_time.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.6.0.

References slsc_list_jump_abs_min_time

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

253

innovators for industry

Name of the
function

slsc_list_para_mark_abs

Purpose Like slsc_list_mark_abs. But offers the argument ParaTarget additionally, by which a Ramp
is defined (in the working field, the value/s of one/two “ActiveChannel” is/are varied
linearly).

Function
signature

uint32_t slsc_list_para_mark_abs(size_t Handle, const double* Target,
const double* ParaTarget);

Argument(s) Handle Handle to a syncAXIS control instance.

Target Pointer to an array of dimension 2.
Coordinates of the target point. In mm.

ParaTarget Array of dimension 2 or 1, see Comment(s), page 250.
ParaTarget refers to the end of the following Ramp. Is used as Factor lp for
calculating the ActiveChannel values, see Section ”About how
ActiveChannel Values along a Contour are Calculated”, page 51.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Like with slsc_list_mark_abs – the behavior of mark vectors is defined in the configu-
ration of the Trajectory planning, see slsc_MarkConfig (for example, MarkSpeed) and
slsc_GeometryConfig (for example, MaxBlendRadius).

• slsc_list_para_mark_abs belongs to the “MIRROR” functions. Therefore, it is relevant
for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• Each slsc_list_[para/multi_para]* function works as its corresponding
slsc_list* function, if no “ActiveChannel” has been entered, see Section ”About
Automatically Controlling the Laser by syncAXIS control (“Automatic Laser Control“)”,
page 48.

• Prior to slsc_list_para_mark_abs, slsc_list_para_enable must have been called.
Otherwise, slsc_list_para_mark_abs works as slsc_list_mark_abs.

• See also Section ”Functions for Defining Ramps (slsc_list_[para/multi_para]*-
Functions)”, page 92.

• slsc_cfg_set_rot_and_offset_2d and slsc_list_set_rot_and_offset_2d change the
target point coordinates (argument Target, see also page 268) of
slsc_list_para_mark_abs.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_list_mark_abs, slsc_list_para_arc_abs, slsc_list_para_circle_2d_abs,
slsc_list_para_disable, slsc_list_para_enable, slsc_list_para_jump_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

254

innovators for industry

Name of the
function

slsc_list_para_playback_module

Purpose Like slsc_list_playback_module, however, parameter values on Ramps are applied, if there
is a slsc_list_para_enable in advance.

Function
signature

uint32_t slsc_list_para_playback_module(size_t Handle, const char* ModuleFileName);

Argument(s) Handle Like slsc_list_playback_module.

ModuleFileName Like slsc_list_playback_module.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_para_playback_module behaves like slsc_list_playback_module, if
slsc_list_para_enable has not been called in advance.

• Regarding the parameter values for automatic laser control,
slsc_list_para_playback_module behaves mostly like other
slsc_list_para_[*]/slsc_list_multi_para_[*] functions. The main exception is that these
values cannot be redefined at replay time.

• Therefore, when the Module is replayed, these values start with the recorded values
and not with the end values of the preceding function or with the
ParaTargetDefault value specified in slsc_list_para_enable.

• When using slsc_list_para_playback_module, make sure that the ActiveChannel
configuration in the syncAXISConfig.xml (see Chapter 2.9.2 ”Definition of the Channels
and ActiveChannel”, page 48) matches in regards to recording time and replay time.

• See Chapter 2.11 ”About Working with “Modules””, page 65.

Code example –

Version info Available as of syncAXIS-DLL V1.3.0.

References slsc_list_playback_module

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

255

innovators for industry

Name of the
function

slsc_list_playback_module

Purpose Integrates (“replays”) a Module into the current Job. Parameter values on Ramps are not
applied.

Function
signature

uint32_t slsc_list_playback_module(size_t Handle, const char* ModuleFileName);

Argument(s) Handle Handle to a syncAXIS control instance.

ModuleFileName Absolute file path of the Module file to be read in (*.slm).
Pointer to a \0-terminated ANSI string, 1 byte per char.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_playback_module is allowed in simulation mode and (other than
slsc_list_begin_module as well in) hardware mode.

• slsc_list_playback_module is allowed in Operation mode “ScannerOnly“, “StageOnly“,
“ScannerAndStage“.

• For slsc_list_playback_module, there is no corresponding Configuration function
(slsc_cfg_*).

• See also Section ”Functions for “Modules””, page 95.

• In the following cases, slsc_list_playback_module is rejected and the return value
indicates that a bit is set:
– The specified Module file cannot be opened

Bit #06 (UnplausibleOrUnknownParameter)
– The version number in Module file is incompatible

Bit #06 (UnplausibleOrUnknownParameter)
– The Job to be recorded has not been completely written to the Module file.

Bit #06 (UnplausibleOrUnknownParameter)
– The Operation mode is incompatible

Bit #09 (NotAllowedInCurrentConfiguration)
• A ScannerOnly (ScannerAndStage) recorded module must not be replayed in StageOnly

Operation mode.
• A StageOnly recorded module may only be replayed in StageOnly Operation mode.

– JumpSpeed or MarkSpeed in the Module are greater than speed limit at replay time
Bit #09 (NotAllowedInCurrentConfiguration)

– Acceleration limit or jerk limit in the Module greater than the corresponding limit at
replay time
Bit #09 (NotAllowedInCurrentConfiguration)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

256

innovators for industry

Comment(s)
(cont’d)

• The following cases merely trigger a new [WARN] log file line (see [WARN] log file
lines):
– The lowest jump time in the Module is smaller than LaserPreTriggerTime at replay time.

Some laser switching time points may not be set as expected.
– Delay values for scan device and positioning stage in the Module differ to those at

replay time. With smaller Delays at replay time some “SIGNAL” functions for which
negative TimeDelay values are specified may get ignored.

– The Module has been recorded in Operation mode ScannerOnly (ScannerAndStage) and is
replayed in Operation mode ScannerAndStage (ScannerOnly).

– Only relevant for slsc_list_para_playback_module: different ActiveChannel config-
uration in the module for replay time than for recording time.

• On transitions (“Module boundaries”) into the Module Trajectory:
– If the connection cannot be made directly, there is always a Sky Writing-like motion

(no blending).
– If a Module begins (ends) with a jump, it is not combined with jumps following at

replay time, but both jumps are executed separately.

• See Chapter 2.11 ”About Working with “Modules””, page 65.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example See Figure 29, page 69.

Version info Available as of syncAXIS-DLL V1.3.0.

References slsc_list_begin_module, slsc_list_para_playback_module

Name of the
function

slsc_list_playback_module

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

257

innovators for industry

Name of the
function

slsc_list_set_approx_blend_limit

Purpose Changes the ApproxBlendLimit value, which is specified in the configuration of the
Trajectory planning (see below). This change applies to all following Job functions
(slsc_list_*) but only until the end of the Job.

Function
signature

uint32_t slsc_list_set_approx_blend_limit(size_t Handle, double ApproxBlendLimit);

Argument(s) Handle Handle to a syncAXIS control instance.

ApproxBlendLimit ApproxBlendLimit value.
See also slsc_GeometryConfig.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_set_approx_blend_limit changes the configuration of the specified
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change applies as of the insert position but only until the end of the
currently running Job.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

258

innovators for industry

Name of the
function

slsc_list_set_calculation_dynamics_jump_scan_device

Purpose Changes:

• The maximum acceleration and jerk value of the intended scan device type. The values
are used only in Trajectory planning calculations of the scan device motion – however,
only for jumps but not markings

This change applies to all following Job functions (slsc_list_*) but only until the end of the
Job.

Function
signature

uint32_t slsc_list_set_calculation_dynamics_jump_scan_device(size_t Handle,
double JumpAngularAcc, double JumpAngularJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

JumpAngularAcc Like JumpAngularAcc.

JumpAngularJerk Like JumpAngularJerk.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Caution! syncAXIS control uses the Acceleration value = JumpAngularAcc =
JumpAngularAcc to plan trajectories for the Operation modes “ScannerOnly“ and
“ScannerAndStage”. Make sure that the entered values are correct.

• Caution! syncAXIS control uses the Jerk value = JumpAngularJerk =
JumpAngularJerk to plan trajectories for the Operation modes “ScannerOnly“ and
“ScannerAndStage”. Make sure that the entered values are correct.

• slsc_list_set_calculation_dynamics_jump_scan_device changes the configuration of
the specified syncAXIS control instance. In the process, the syncAXIS control instance is
not reinitialized. The change applies as of the insert position but only until the end of
the currently running Job.

• The corresponding Configuration function (slsc_cfg_*) of
slsc_list_set_calculation_dynamics_jump_scan_device is
slsc_cfg_set_calculation_dynamics_jump_scan_device.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.6.0.

References slsc_cfg_get_calculation_dynamics_jump_scan_device,
slsc_cfg_set_calculation_dynamics_jump_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

259

innovators for industry

Name of the
function

slsc_list_set_calculation_dynamics_mark_scan_device

Purpose Changes:

• The maximum acceleration and jerk value of the intended scan device type. The values
are used only in Trajectory planning calculations of the scan device motion – however,
only for markings but not jumps

This change applies to all following Job functions (slsc_list_*) but only until the end of the
Job.

Function
signature

uint32_t slsc_list_set_calculation_dynamics_mark_scan_device(size_t Handle,
double MarkAngularAcc, double MarkAngularJerk);

Argument(s) Handle Handle to a syncAXIS control instance.

MarkAngularAcc Like MarkAngularAcc.

MarkAngularJerk Like MarkAngularJerk.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • Caution! syncAXIS control uses the Acceleration value = MarkAngularAcc =
MarkAngularAcc to plan trajectories for the Operation modes “ScannerOnly“ and
“ScannerAndStage”. Make sure that the entered values are correct.

• Caution! syncAXIS control uses the Jerk value = MarkAngularJerk =
MarkAngularJerk to plan trajectories for the Operation modes “ScannerOnly“ and
“ScannerAndStage”. Make sure that the entered values are correct.

• slsc_list_set_calculation_dynamics_mark_scan_device changes the configuration of
the specified syncAXIS control instance. In the process, the syncAXIS control instance is
not reinitialized. The change applies as of the insert position only until the end of the
currently running Job.

• The corresponding Configuration function (slsc_cfg_*) of
slsc_list_set_calculation_dynamics_mark_scan_device is
slsc_cfg_set_calculation_dynamics_mark_scan_device.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.6.0.

References slsc_cfg_get_calculation_dynamics_mark_scan_device,
slsc_cfg_set_calculation_dynamics_mark_scan_device

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

260

innovators for industry

Name of the
function

slsc_list_set_contour_dependent_speed_control_2d

Purpose Switches on/off the “Contour-dependent speed calculation“. Furthermore, it can be
changed how the syncAXIS control instance internally determines speeds along curves
(“left” or “right” of the curve mid-line; distance to it). Once the “Automatic Laser Control“is
activated, these results are used to correspondingly set, for example, the laser spot
distances equidistant. This change applies to all following Job functions (slsc_list_*) but
only until the end of the Job.

Function
signature

uint32_t slsc_list_set_contour_dependent_speed_control_2d(size_t Handle, int32_t Direction,
double SpotRadius);

Argument(s) Handle Handle to a syncAXIS control instance.

Direction 0: “Contour-dependent speed calculation“ = off.
Speeds are determined on the curve mid-line. Is also the default status
after syncAXIS control instance initialization by
slsc_cfg_initialize_from_file.

+1: “Contour-dependent speed calculation“ = on.
Speeds are determined right of the curve mid-line.

–1: “Contour-dependent speed calculation“ = on.
Speeds are determined left of the curve mid-line.

SpotRadius Radius of the laser spot in the working plane.
In mm.
The value specifies how far to the right or left of the curve mid-line the
speeds are determined.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_set_contour_dependent_speed_control_2d changes the configuration of
the specified syncAXIS control instance. In the process, the syncAXIS control instance is
not reinitialized. The change applies as of the insert position but only until the end of
the currently running Job.

• slsc_list_set_contour_dependent_speed_control_2d has no effect (no error is
returned), if the “Automatic Laser Control“ is not switched on (for example, no
ActiveChannel is entered in syncAXISConfig.xml).

• See also Chapter 2.9.5 ”About the “Contour-dependent speed calculation“”, page 60.

• The corresponding Configuration function (slsc_cfg_*) of
slsc_list_set_contour_dependent_speed_control_2d is
slsc_cfg_set_contour_dependent_speed_control_2d.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_cfg_set_contour_dependent_speed_control_2d, slsc_list_set_laser_on_move

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

261

innovators for industry

Name of the
function

slsc_list_set_free_variable

Purpose Like slsc_ctrl_set_free_variable.

Function
signature

uint32_t slsc_list_set_free_variable(size_t Handle, uint32_t Number, uint32_t Value, double
TimeDelay);

Argument(s) Handle Handle to a syncAXIS control instance.

Number Number of the free variable on the RTC6 to be set.
Allowed value range: [0…7].
Only the three least significant bits are evaluated.

Value Value of the free variable to be set on the RTC6.

TimeDelay Relative point in time between 2 Job functions (slsc_list_*), when the
change is going to be applied (reference point: point in time at marking
execution when the target point of the first Job function is reached, see
Figure 14, page 46). In s. Only positive values are allowed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • In simulation mode, slsc_ctrl_get_free_variable, slsc_ctrl_set_free_variable, as well
as slsc_list_set_free_variable have no effect.

• For excessive TimeDelay values, the change is applied with slsc_list_end at latest.

• The change
– is persistent
– applies to all Jobs that follow

• slsc_list_set_free_variable belongs to the “SIGNAL” functions. See also Chapter 2.7.2
”About the Point in Time when Output Signals are actually set”, page 45.

• slsc_list_set_free_variable is a direct implementation of the RTC6 command
set_free_variable_list in syncAXIS control. However, set_free_variable_list does not
provide the configuration parameter TimeDelay.

• The functions for free variables (slsc_ctrl_set_free_variable,
slsc_list_set_free_variable and slsc_ctrl_get_free_variable) can be used, for example,
to determine and count increments (within Jobs).

• For further information on free variables, refer to the RTC6 Manual, Chapter 6.9.1 ”Free
Variables”, page 134.

• The current value of a free variable can be queried by slsc_ctrl_get_free_variable.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

262

innovators for industry

Comment(s)
(cont’d)

• The corresponding Control function (slsc_ctrl_*) of slsc_list_set_free_variable is
slsc_ctrl_set_free_variable.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.2.

Latest change with syncAXIS-DLL V1.2.4: TimeDelay values for V1.1 are shifted syncAXIS-DLL-
internally by a certain delay in V1.2 (for example, in Operation mode “ScannerOnly“ by
0.00125 s).

References slsc_ctrl_get_free_variable, slsc_ctrl_set_free_variable

Name of the
function

slsc_list_set_free_variable

Name of the
function

slsc_list_set_jump_speed

Purpose Changes the jump speed. This change applies to all following Job functions (slsc_list_*) but
only until the end of the Job.

Function
signature

uint32_t slsc_list_set_jump_speed(size_t Handle, double JumpSpeed);

Argument(s) Handle Handle to a syncAXIS control instance.

JumpSpeed Jump speed. In mm/s.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_set_jump_speed changes the configuration of the specified
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change applies as of the insert position (but other than with the similar
RTC command) but only until the end of the currently running Job.

• The corresponding Configuration function (slsc_cfg_*) of slsc_list_set_jump_speed is
slsc_cfg_set_jump_speed.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_cfg_set_jump_speed

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

263

innovators for industry

Name of the
function

slsc_list_set_laser_on_move

Purpose Delays the “Laser Active” Operation by exactly the amount of time needed to travel the
specified path length (PathLength) on the current marking section.
This change applies to all following Job functions (slsc_list_*) but only until the end of the
Job.

Function
signature

uint32_t slsc_list_set_laser_on_move(size_t Handle, double PathLength);

Argument(s) Handle Handle to a syncAXIS control instance.

PathLength Path length on the marking sections after which the laser is to be
actually switched on. In mm.
Allowed values:  0.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_set_laser_on_move changes the configuration of the specified
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change applies as of the insert position but only until the end of the
currently running Job.

• For a PathLength value < 0 the return value indicates that Bit #06 is set
(UnplausibleOrUnknownParameter).

• Use case for slsc_list_set_laser_on_move: see Section ”About
slsc_list_set_laser_on_move”, page 88.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.5.0.

References slsc_list_set_contour_dependent_speed_control_2d

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

264

innovators for industry

Name of the
function

slsc_list_set_laser_pulses

Purpose Like slsc_ctrl_set_laser_pulses.

Function
signature

uint32_t slsc_list_set_laser_pulses(size_t Handle, double HalfPeriod, double PulseLength, double
TimeDelay);

Argument(s) Handle Handle to a syncAXIS control instance.

HalfPeriod Half of the output period. In s.
Allowed value range: [0…671].

PulseLength Pulse length of the laser signals LASER1 and LASER2. In s.
Allowed value range: [0…671].

TimeDelay Relative point in time between 2 Job functions (slsc_list_*), when the
change is going to be applied (reference point: point in time at marking
execution when the target point of the first Job function is reached, see
Figure 14, page 46). In s. Only positive values are allowed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • In simulation mode, slsc_ctrl_set_laser_pulses and slsc_list_set_laser_pulses have no
effect.

• slsc_list_set_laser_pulses changes the configuration of the specified
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized.

• HalfPeriod and PulseLength change what has been set during initialization (by the attri-
butes of the same name in syncAXISConfig.xml-tag <cfg:LaserOutput Unit=“s“ HalfPeriod=“…“
PulseLength=“…“ />).

• slsc_ctrl_set_laser_pulses and slsc_list_set_laser_pulses are provided for those
Sky Writings who (due to the laser they use) cannot use the “Automatic Laser Control“
to achieve equidistant spot distances and instead want to influence the pulse output
via HalfPeriod and PulseLength.

• If the “Automatic Laser Control“ is active and SpotDistance is an “ActiveChannel”, see
Chapter 2.9.2 ”Definition of the Channels and ActiveChannel”, page 48, then:
– HalfPeriodv is not effective
– PulseLength is effective (that is, pulse lengths of laser signal LASER1 and LASER2 are

changed)

• For excessive TimeDelay values, the change is applied with slsc_list_end at latest.

• The change
– is persistent
– applies to all Jobs that follow

• Related RTC6 command: set_laser_pulses. However, it does not provide the configu-
ration parameter TimeDelay.

• slsc_list_set_laser_pulses belongs to the “SIGNAL” functions. See also Chapter 2.7.2
”About the Point in Time when Output Signals are actually set”, page 45.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

265

innovators for industry

Comment(s)
(cont’d)

• The corresponding Control function (slsc_ctrl_*) of slsc_list_set_laser_pulses is
slsc_ctrl_set_laser_pulses.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.4.

References slsc_ctrl_set_laser_pulses

Name of the
function

slsc_list_set_laser_pulses

Name of the
function

slsc_list_set_mark_speed

Purpose Changes the marking speed. This change applies to all following Job functions (slsc_list_*)
but only until the end of the Job.

Function
signature

uint32_t slsc_list_set_mark_speed(size_t Handle, double MarkSpeed);

Argument(s) Handle Handle to a syncAXIS control instance.

MarkSpeed Mark speed. In mm/s.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_set_mark_speed changes the configuration of the specified
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change applies as of the insert position (but other than with the similar
RTC command) but only until the end of the currently running Job.

• The corresponding Configuration function (slsc_cfg_*) of slsc_list_set_mark_speed is
slsc_cfg_set_mark_speed.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

References slsc_cfg_set_mark_speed

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

266

innovators for industry

Name of the
function

slsc_list_set_matrix_and_offset

Purpose Changes target point coordinates according to a transformation matrix and an offset value.
This change applies to all following Job functions (slsc_list_*) but only until the end of the
Job.

Function
signature

uint32_t slsc_list_set_matrix_and_offset(size_t Handle, const double* Matrix, const double*
Offset);

Argument(s) Handle Handle to a syncAXIS control instance.

Matrix Pointer to an array of dimension 4.
Coefficients m11…m22 of a (2 × 2) transformation matrix.

Offset Pointer to an array of dimension 2.
x value and y value by which target points are moved in the working
field. In mm.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_set_matrix_and_offset changes (for example, like
slsc_list_set_rot_and_offset_2d) the configuration of the specified
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change applies as of the insert position but only until the end of the
currently running Job.

• Target point coordinates of Job functions (slsc_list_*):
see list bullet on page 268.

• slsc_list_set_matrix_and_offset (like slsc_cfg_set_matrix_and_offset) calculates the
new target points according to (transformation matrix × target point) + offset:

• With suitable transformation matrix coefficients (argument Matrix), for example,
scaling, rotating or flipping of marking patterns can be achieved. See also Section
”Functions for Changing Target Point Coordinates”, page 92.

• The corresponding Configuration function (slsc_cfg_*) of
slsc_list_set_matrix_and_offset is slsc_cfg_set_matrix_and_offset.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.1.0.

References slsc_cfg_set_matrix_and_offset

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

267

innovators for industry

Name of the
function

slsc_list_set_min_mark_speed

Purpose Changes the minimal marking speed, see MinimalMarkSpeed. This change applies to all
following Job functions (slsc_list_*) but only until the end of the Job.

Function
signature

uint32_t slsc_list_set_min_mark_speed(size_t Handle, double MinimalMarkSpeed);

Argument(s) Handle Handle to a syncAXIS control instance.

MinimalMarkSpeed Minimal marking speed. In mm/s.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_set_min_mark_speed changes the configuration of the specified
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change applies as of the insert position (but other than with the similar
RTC command) but only until the end of the currently running Job.

• For slsc_list_set_min_mark_speed, there is no corresponding Configuration function
(slsc_cfg_*) of.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.6.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

268

innovators for industry

Name of the
function

slsc_list_set_rot_and_offset_2d

Purpose Changes target point coordinates by an angle and an offset value. This change applies to
all following Job functions (slsc_list_*) but only until the end of the Job.

Function
signature

uint32_t slsc_list_set_rot_and_offset_2d(size_t Handle, double Angle, const double* Offset);

Argument(s) Handle Handle to a syncAXIS control instance.

Angle Angle (about the origin 0,0) by which target points are rotated in the
working field. In rad.
Positive values: rotation is counterclockwise.
Negative values: rotation is clockwise.

Offset Pointer to an array of dimension 2.
x value and y value by which target points are moved in the working
field. In mm.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_set_rot_and_offset_2d changes the configuration of the specified
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized. The change applies as of the insert position but only until the end of the
currently running Job.

• Target point coordinates of Job functions (slsc_list_*) are:
– Mid and Target of slsc_list_arc_abs
– Mid and Target of slsc_list_dashed_arc_abs
– Mid and Target of slsc_list_multi_para_arc_abs
– Mid and Target of slsc_list_multi_para_dashed_arc_abs
– Mid and Target of slsc_list_para_arc_abs
– Mid and Target of slsc_list_para_dashed_arc_abs

– Center of slsc_list_circle_2d_abs
– Center of slsc_list_dashed_circle_2d_abs
– Center of slsc_list_multi_para_circle_2d_abs
– Center of slsc_list_multi_para_dashed_circle_2d_abs
– Center of slsc_list_para_circle_2d_abs
– Center of slsc_list_para_dashed_circle_2d_abs

– Target of slsc_list_dashed_mark_abs
– Target of slsc_list_jump_abs
– Target of slsc_list_jump_abs_min_time
– Target of slsc_list_mark_abs
– Target of slsc_list_multi_para_dashed_mark_abs
– Target of slsc_list_multi_para_mark_abs
– Target of slsc_list_para_dashed_mark_abs
– Target of slsc_list_para_jump_abs
– Target of slsc_list_para_jump_abs_min_time
– Target of slsc_list_para_mark_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

269

innovators for industry

Comment(s)
(cont’d)

• slsc_list_set_rot_and_offset_2d calculates the new target points as follows:
(rotation matrix × target point) + offset, thus concretely:
– new target point x value = ((x × cos ) – (y × sin )) + x Offset value
– new target point y value = ((x × sin ) + (y × cos )) + y Offset value
– Example:

• The corresponding Configuration function (slsc_cfg_*) of
slsc_list_set_rot_and_offset_2d is slsc_cfg_set_rot_and_offset_2d.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

• A Module can be positioned and rotated anywhere in the space by
slsc_list_set_rot_and_offset_2d.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

References slsc_cfg_set_rot_and_offset_2d, slsc_list_arc_abs, slsc_list_circle_2d_abs,
slsc_list_jump_abs, slsc_list_mark_abs

Name of the
function

slsc_list_set_rot_and_offset_2d

+20–20 +10–10 0

–10

+10

α

P3=Rα×P1+Offset=(0,-10)

P2=Rα×P1=(0,10)

P1=(10,0)

cos α –sin α
sin α cos α Rα=Rotation matrixα=

x Position [mm]

y Position [mm]

P1=target point of, for example, slsc_list_jump_abs
Offset (x=0, y=–2)
α=π/2

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

270

innovators for industry

Name of the
function

slsc_list_suppress_spotdistance_control

Purpose Only if “Automatic Laser Control“ is active with SpotDistance as an “ActiveChannel”:
supplementary function that must precede slsc_list_wait_with_laser_on.

Function
signature

uint32_t slsc_list_suppress_spotdistance_control(size_t Handle, double TimeDelay);

Argument(s) Handle Handle to a syncAXIS control instance.

TimeDelay Relative point in time between 2 Job functions (slsc_list_*), when the
change is going to be applied (reference point: point in time at marking
execution when the target point of the first Job function is reached, see
Figure 14, page 46). In s. Only positive values are allowed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • If the “Automatic Laser Control“ is active and SpotDistance is an “ActiveChannel”, see
Chapter 2.9.2 ”Definition of the Channels and ActiveChannel”, page 48, then:
slsc_list_suppress_spotdistance_control must be called prior to
slsc_list_wait_with_laser_on. See Section ”Special Case: SpotDistance as an
“ActiveChannel“”, page 87 for further details.

• slsc_list_suppress_spotdistance_control and
slsc_list_unsuppress_spotdistance_control require SpotDistance to be set as
“ActiveChannel”. Otherwise, the return value indicates that Bit #09 is set
(NotAllowedInCurrentConfiguration).

• slsc_list_suppress_spotdistance_control syncAXIS-DLL-internally suppresses the
functionality that creates equidistant spot spacings. If this functionality is already
suppressed, slsc_list_suppress_spotdistance_control has no effect.

• For excessive TimeDelay values, the change is applied with slsc_list_end at latest.

• The change
– is persistent
– applies to all Jobs that follow

• slsc_list_suppress_spotdistance_control belongs to the “SIGNAL” functions. See also
Chapter 2.7.2 ”About the Point in Time when Output Signals are actually set”, page 45.

• The complementary function of slsc_list_suppress_spotdistance_control is
slsc_list_unsuppress_spotdistance_control.

• For slsc_list_suppress_spotdistance_control, there is neither a corresponding
Configuration function (slsc_cfg_*) nor Control function (slsc_ctrl_*).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

271

innovators for industry

Comment(s)
(cont’d)

• slsc_list_suppress_spotdistance_control and
slsc_list_unsuppress_spotdistance_control are allowed in all Operation modes (see
enum slsc_OperationMode).

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.7.

References slsc_list_unsuppress_spotdistance_control, slsc_list_wait_with_laser_on

Name of the
function

slsc_list_suppress_spotdistance_control

Name of the
function

slsc_list_unsuppress_spotdistance_control

Purpose Cancels the effect of slsc_list_suppress_spotdistance_control.

Function
signature

uint32_t slsc_list_unsuppress_spotdistance_control(size_t Handle, double TimeDelay);

Argument(s) Handle Handle to a syncAXIS control instance.

TimeDelay Relative point in time between 2 Job functions (slsc_list_*), when the
change is going to be applied (reference point: point in time at marking
execution when the target point of the first Job function is reached, see
Figure 14, page 46). In s. Only positive values are allowed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • See slsc_list_suppress_spotdistance_control.

• See Section ”Special Case: SpotDistance as an “ActiveChannel“”, page 87.

• slsc_list_unsuppress_spotdistance_control belongs to the “SIGNAL” functions. See
also Chapter 2.7.2 ”About the Point in Time when Output Signals are actually set”,
page 45.

Code example –

Version info Available as of syncAXIS-DLL V1.2.7.

References slsc_list_suppress_spotdistance_control

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

272

innovators for industry

Name of the
function

slsc_list_wait_with_laser_off

Purpose Like slsc_list_wait_with_laser_on, but the laser is switched off.

Function
signature

uint32_t slsc_list_wait_with_laser_off(size_t Handle, double Time);

Argument(s) Handle Handle to a syncAXIS control instance.

Time Duration in which the laser control signal LASERON is switched off. The
mirrors remain in their last position. In s.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_wait_with_laser_off is rejected, if Time is shorter than a certain time resulting
from values specified in the syncAXISConfig.xml (under <cfg:Configuration> 

<cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:LaserSwitchConfig>). The following
applies:
– With LaserPreTriggerTime > 0: Time < LaserMinOffTime + LaserPreTriggerTime
– With LaserPreTriggerTime < 0: Time < LaserMinOffTime
Then, the return value indicates that Bit #06 is set (UnplausibleOrUnknownParameter).

• slsc_list_wait_with_laser_off belongs to the “MIRROR” functions. Therefore, it is
relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• slsc_list_wait_with_laser_off behaves like a slsc_list_mark_abs with velocity 0 and
switched-off laser.

• The complementary function of slsc_list_wait_with_laser_off is
slsc_list_wait_with_laser_on.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V1.2.4.

References slsc_list_wait_with_laser_on, slsc_list_mark_abs

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

273

innovators for industry

Name of the
function

slsc_list_wait_with_laser_on

Purpose Defines a waiting time with which the laser spot is to wait at the last defined target point
with the laser switched on.

Function
signature

uint32_t slsc_list_wait_with_laser_on(size_t Handle, double Time);

Argument(s) Handle Handle to a syncAXIS control instance.

Time Duration in which the laser control signal LASERON is switched on. The
mirrors remain in their last position. In s.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_wait_with_laser_on is rejected, if Time < 0. Then, the return value indicates
that Bit #06 is set (UnplausibleOrUnknownParameter).

• slsc_list_wait_with_laser_on belongs to the “MIRROR” functions. Therefore, it is
relevant for setting output signals, see Chapter 2.7.2 ”About the Point in Time when
Output Signals are actually set”, page 45.

• slsc_list_wait_with_laser_on behaves like a slsc_list_mark_abs with velocity 0.
As of syncAXIS-DLL  V1.2.6, the following applies: with MinimalMarkSpeed = 0, the
transition from slsc_list_wait_with_laser_on to slsc_list_mark_abs is now seamless
because the Sky Writing-like motion (where the Laser is switched off) is omitted there.
This makes it possible to start cutting immediately after penetration of the workpiece
(for example, sheet metal).

• If the “Automatic Laser Control“ is active and SpotDistance is an “ActiveChannel”, see
Chapter 2.9.2 ”Definition of the Channels and ActiveChannel”, page 48, then:
slsc_list_suppress_spotdistance_control must be called prior to
slsc_list_wait_with_laser_on.

• slsc_list_wait_with_laser_on can be used, for example, if the quality of the laser spot
is to be measured by external sensors.

• The complementary function of slsc_list_wait_with_laser_on is
slsc_list_wait_with_laser_off.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example // C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
size_t JobID = 0; // Create JobID variable,

// initialize with 0.
slsc_list_begin(Handle, &JobID); // Job start.
double Target1[2] = {0, 0}; // Array of size 2 for target point 1.
slsc_list_jump_abs(Handle, Target1); // Jump to target point 1.
slsc_list_wait_with_laser_on(Handle, 0.5);// As if it would be a mark vector with

// velocity 0 => set laser control signal LASERON
// and stay at current location
// for half a sec.

slsc_list_end(Handle); // Job end.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

274

innovators for industry

Version info Available as of syncAXIS-DLL V0.11.0.

Latest change with syncAXIS-DLL V1.2.6: behavior changed.

References slsc_list_wait_with_laser_off, slsc_list_mark_abs,
slsc_list_suppress_spotdistance_control

Name of the
function

slsc_list_wait_with_laser_on

Name of the
function

slsc_list_write_analog_x

Purpose Writes a output value to the 12-Bit-analog output port ANALOG OUT1 or ANALOG OUT2
of all RTC6 boards.

Function
signature

uint32_t slsc_list_write_analog_x(size_t Handle, slsc_AnalogOutput Channel, double Value, double
TimeDelay);

Argument(s) Handle Handle to a syncAXIS control instance.

Channel Analog output port ANALOG OUT1 or ANALOG OUT2 (“channel”).
=1: ANALOG OUT1.
=2: ANALOG OUT2.
Allowed value range: [1, 2]. See enum slsc_AnalogOutput.

Value Output value at the ANALOG OUT1 or ANALOG OUT2 analog output port.
Value = 0 corresponds to an output value of 0 V.
Value = 1 corresponds to an output value of 10 V.

TimeDelay Relative point in time between 2 Job functions (slsc_list_*), when the
change is going to be applied (reference point: point in time at marking
execution when the target point of the first Job function is reached, see
Figure 14, page 46). In s. Only positive values are allowed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_list_write_analog_x has no effect with activated “Automatic Laser Control“, if the
analog output port specified at Channel is defined as “ActiveChannel“ (see Chapter 2.9.2
”Definition of the Channels and ActiveChannel”, page 48), that is, the output value of
this analog output port is dictated by the automatic laser control.

• The ANALOG OUT1 signal is outputted with
– RTC6 PCI Express Boards (as RTC5 boards): LASER connector, pin 08

• The ANALOG OUT2 signal is outputted with
– RTC6 PCI Express Boards (as RTC5 boards): LASER connector, pin 15, as well as

MARKING ON THE FLY socket connector, pin 14

• slsc_list_write_analog_x changes the configuration of the specified
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized.

• For excessive TimeDelay values, the change is applied with slsc_list_end at latest.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

275

innovators for industry

Comment(s)
(cont’d)

• The change
– is persistent
– applies to all Jobs that follow

• Related RTC6 command: write_da_x_list. However, it does not provide the configu-
ration parameter TimeDelay.

• slsc_list_write_analog_x belongs to the “SIGNAL” functions. See also Chapter 2.7.2
”About the Point in Time when Output Signals are actually set”, page 45.

• The corresponding Control function (slsc_ctrl_*) of slsc_list_write_analog_x is
slsc_ctrl_write_analog_x.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.11.0.

Change with syncAXIS-DLL V1.1.0: data type of Channel.

Latest change with syncAXIS-DLL V1.2.4: TimeDelay values for V1.1 are shifted syncAXIS-DLL-
internally by a certain delay in V1.2 (for example, in Operation mode “ScannerOnly“ by
0.00125 s).

References slsc_ctrl_write_analog_x

Name of the
function

slsc_list_write_analog_x

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

276

innovators for industry

Name of the
function

slsc_list_write_digital_out

Purpose Writes a 16-bit output value to the 16-bit digital output port
DIGITAL OUT 0…DIGITAL OUT 15 of all RTC6 boards.

Function
signature

uint32_t slsc_list_write_digital_out(size_t Handle, uint16_t Value, double TimeDelay);

Argument(s) Handle Handle to a syncAXIS control instance.

Value 16-bit output value (DIGITAL OUT0…DIGITAL OUT15) at the 16-bit digital
output port.

TimeDelay Relative point in time between 2 Job functions (slsc_list_*), when the change
is going to be applied (reference point: point in time at marking execution
when the target point of the first Job function is reached, see Figure 14,
page 46). In s. Only positive values are allowed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The DIGITAL OUT 0…DIGITAL OUT 15 signal is outputted with
– RTC6 PCI Express Boards (as RTC5 boards): EXTENSION 1 socket connector,

pin 01…pin 31 (odd-numbered pins only)

• slsc_list_write_digital_out changes the configuration of the specified
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized.

• For excessive TimeDelay values, the change is applied with slsc_list_end at latest.

• The change
– is persistent
– applies to all Jobs that follow

• Related RTC6 command: write_io_port_list. However, it does not provide the configu-
ration parameter TimeDelay.

• slsc_list_write_digital_out belongs to the “SIGNAL” functions. See also Chapter 2.7.2
”About the Point in Time when Output Signals are actually set”, page 45.

• The corresponding Control function (slsc_ctrl_*) of slsc_list_write_digital_out is
slsc_ctrl_write_digital_out.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

Change with syncAXIS-DLL V1.1.0: data type of Value.

Latest change with syncAXIS-DLL V1.2.4: TimeDelay values for V1.1 are shifted syncAXIS-DLL-
internally by a certain delay in V1.2 (for example, in Operation mode “ScannerOnly“ by
0.00125 s).

References slsc_ctrl_write_digital_out, slsc_list_write_digital_out_mask

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

277

innovators for industry

Name of the
function

slsc_list_write_digital_out_mask

Purpose Writes only those bits of the Value-values to the 16-bit digital output port of all RTC6, which
are specified in the user-defined bit mask (Mask parameter).

Function
signature

uint32_t slsc_list_write_digital_out_mask(size_t Handle, uint16_t Value, uint16_t Mask, double
TimeDelay);

Argument(s) Handle Handle to a syncAXIS control instance.

Value 16-bit output value (DIGITAL OUT0 … DIGITAL OUT15).

Mask 16-bit mask (for DIGITAL OUT0 … DIGITAL OUT15).

TimeDelay Relative point in time between 2 Job functions (slsc_list_*), when the change
is going to be applied (reference point: point in time at marking execution
when the target point of the first Job function is reached, see Figure 14,
page 46). In s. Only positive values are allowed.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • The DIGITAL OUT 0 … DIGITAL OUT 15 signal is outputted with
– RTC6 PCI Express Boards (as RTC5 boards): EXTENSION 1 socket connector,

pin 01…pin 31 (odd-numbered pins only)

• The parameter Mask defines which bits of the 16-bit digital output port (see
slsc_list_write_digital_out) are changed, whereas the argument Value defines how
they are changed. All bits of the 16-bit digital output port which are not set in Mask
remain unchanged. These are outputted again as previously.

• For Mask = 0xFFFF (“set all bits”), slsc_list_write_digital_out_mask behaves like
slsc_list_write_digital_out.

• slsc_list_write_digital_out_mask changes the configuration of the specified
syncAXIS control instance. In the process, the syncAXIS control instance is not reini-
tialized.

• For excessive TimeDelay values, the change is applied with slsc_list_end at latest.

• The change
– is persistent
– applies to all Jobs that follow

• Related RTC6 command: write_io_port_mask_list. However, it does not provide the
configuration parameter TimeDelay.

• slsc_list_write_digital_out_mask belongs to the “SIGNAL” functions. See also
Chapter 2.7.2 ”About the Point in Time when Output Signals are actually set”, page 45.

• The corresponding Control function (slsc_ctrl_*) of slsc_list_write_digital_out_mask
is slsc_ctrl_write_digital_out_mask.

• On the permissibility of syncAXIS control functions in the Mode “Manual Positioning“,
see Chapter 2.12 ”About the Mode “Manual Positioning“”, page 70.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
3 Functions Available in the API

278

innovators for industry

Code example –

Version info Available as of syncAXIS-DLL V0.9.0.

Change with syncAXIS-DLL V1.1.0: data type of Value, Mask.

Latest change with syncAXIS-DLL V1.2.4: TimeDelay values for V1.1 are shifted syncAXIS-DLL-
internally by a certain delay in V1.2 (for example, in Operation mode “ScannerOnly“ by
0.00125 s).

References slsc_ctrl_write_digital_out_mask, slsc_list_write_digital_out

Name of the
function

slsc_list_write_digital_out_mask

Name of the
function

slsc_util_reset_pcie

Purpose Carries out a “hard” reset of all found RTC6 PCI Express Boards.

Function
signature

uint32_t slsc_util_reset_pcie(const char* PathToProgramFile);

Argument(s) PathToProgramFile Absolute file path or the relative file path from the execution directory
to the RTC6 files. These must be from the syncAXIS control-software
package.

Return value See Chapter 4 ”Standard Return Values of the syncAXIS-DLL Functions”, page 279.

Comment(s) • slsc_util_reset_pcie is a Utility Function, see also Chapter 3.1.4 ”Utility Functions
(slsc_util_*)”, page 101. Utility Functions (slsc_util_*) may only be called outside
syncAXIS control operation.

• Warning! Risk of injury due to laser radiation! slsc_util_reset_pcie can lead to
states of the RTC6 board(s) in which the laser could emit unexpectedly! Make sure that
the laser is switched off before calling slsc_util_reset_pcie!

• slsc_util_reset_pcie is provided for hard reset, if one of the RTC6 PCI Express Boards is
in a state that is not fixed by a call of slsc_cfg_initialize_from_file (do not use
iSCANcfg.exe here).

• slsc_util_reset_pcie does not reference a syncAXIS control instance (= does not have
an Handle argument). Therefore, no syncAXIS control instance settings are observed, in
particular there is no simulation mode.

• Notice! slsc_util_reset_pcie basically triggers the RTC6 command load_program_file
on all found RTC6 PCI Express Boards, even several times in certain circumstances. No
consideration is given to running syncAXIS control instances and is crashing these!

Code example –

Version info Available as of syncAXIS-DLL V1.3.0.

References –

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
4 Standard Return Values of the syncAXIS-DLL Functions

279

innovators for industry

4 Standard Return Values of the syncAXIS-DLL Functions

Most(1) syncAXIS-DLL functions provide a
return value with uniform meaning
(“standard return value”; not to be confused with
Error Codes with slsc_ctrl_get_error, Log File and
Console, page 282).

This return value is an unsigned 32-bit value (scheme
in hexadecimal notation: 0x nn nn nn nn, see column
Bit mask in the following table).

• The return value is 0, if the function was executed
successfully (“everything is OK”).

• The return value is  0, if the function could not
have been successfully executed. At the same
time, it contains the coded error cause, see
following table.
Remarks: return values  0 result from the fact
that a certain bit is set if a certain error occurs, see
the following table. Example: Bit #03 is set, all
remaining are not. Value of Bit #03 is 8, therefore
the resulting Bit mask is 0x 00 00 00 08
(NotAllowedInExecuting).

With syncAXIS control only one error bit is set at
a time. That is, never several bits are set, even if
several errors have been occurred.

(1) For example, slsc_cfg_get_sync_axis_version does
not.

Bit mask Bit Short name Description

0x 00 00 00 00 Bit #00

(LSB)

= 0 OK The specified function has been successfully executed.

0x 00 00 00 01 Bit #00

(LSB)

= 1 InErrorState The specified syncAXIS control instance is in an error state.
This error state was probably not caused by this very function but
already before!

0x 00 00 00 02 Bit #01 = 1 ErrorOccurred An error has occurred which cannot be specified in more detail.

0x 00 00 00 04 Bit #02 = 1 NotAllowedWithoutInitialization The specified Handle does not exist.
Also: The specified function is not possible at this position (yet).
The syncAXIS control instance is not yet initialized. Example: In the
program source code, slsc_list_begin is entered before
slsc_cfg_initialize_from_file.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
4 Standard Return Values of the syncAXIS-DLL Functions

280

innovators for industry

0x 00 00 00 08 Bit #03 = 1 NotAllowedInExecuting The specified function (for example,
slsc_cfg_initialize_from_file) is not possible at this position
because an execution is currently in progress.

0x 00 00 00 10 Bit #04 = 1 BUFFER_FULL The Input buffer of the specified syncAXIS control instance has no
free capacity at the moment. Possible action in the program code:
send the desired function once again after a short waiting loop.
See also Chapter 2.7.1 ”About the Buffers of the
syncAXIS control Instances”, page 42.

0x 00 00 00 20 Bit #05 = 1 NotReadyForExecution It was tried to start a Job execution. However, (from the
perspective of the syncAXIS control instance) the RTC6 board is
not ready for execution.

0x 00 00 00 40 Bit #06 = 1 UnplausibleOrUnknownParameter The specified function has been tried to apply a parameter that is
not possible in this way.
Example: slsc_list_set_mark_speed(5000), but the maximum speed
of the galvanometer scanner is actually only 500.

0x 00 00 00 80 Bit #07 = 1 JobStructureNotValid The Job does not have a valid structure.

0x 00 00 01 00 Bit #08 = 1 Undefined Reserved.

0x 00 00 02 00 Bit #09 = 1 NotAllowedInCurrentConfiguration The specified function is not allowed with the current configu-
ration.

0x 00 00 04 00 Bit #10 = 1 Undefined Reserved.

0x 00 00 08 00 Bit #11 = 1 NotAllowedInCurrentMode The specified function is not allowed in the current
Operation mode.

0x 00 00 10 00 Bit #12 = 1 InvalidPosition The specified function fails due to an invalid position.
Example: at slsc_ctrl_start_execution, the current position of the
positioning stage does not match the position calculated for the
begin of the Job.

0x 00 00 20 00 Bit #13 = 1 Timeout The specified function exceeds a specified time limit and therefore
fails.

0x 00 00 40 00 Bit #14 = 1 XmlLoadError XML file not found or is invalid.

0x 00 00 80 00 Bit #15 = 1 NotEnoughMemory The initialization of the syncAXIS control instance failed because
there was not enough free memory on the PC.

0x 00 01 00 00 Bit #16 = 1 Undefined Reserved.

0x 00 02 00 00 Bit #17 = 1 Undefined Reserved.

0x 00 04 00 00 Bit #18 = 1 HandshakeFailed The initialization of the positioning stage failed.

Bit mask Bit Short name Description

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
4 Standard Return Values of the syncAXIS-DLL Functions

281

innovators for industry

0x 00 08 00 00 Bit #19 = 1 Undefined Reserved.

0x 00 10 00 00 Bit #20 = 1 UnknownException An unknown exception occurred during the execution of the spec-
ified function.

0x 00 20 00 00 Bit #21 = 1 Undefined Reserved.

0x 00 40 00 00 Bit #22 = 1 Undefined Reserved.

0x 00 80 00 00 Bit #23 = 1 Undefined Reserved.

0x 01 00 00 00 Bit #24 = 1 Undefined Reserved.

0x 02 00 00 00 Bit #25 = 1 Undefined Reserved.

0x 04 00 00 00 Bit #26 = 1 Undefined Reserved.

0x 08 00 00 00 Bit #27 = 1 Undefined Reserved.

0x 10 00 00 00 Bit #28 = 1 UnknownDevice The specified device is not known.

0x 20 00 00 00 Bit #29 = 1 Undefined Reserved.

0x 40 00 00 00 Bit #30 = 1 MaxInstancesReached An additional syncAXIS control instance cannot be created
The max. number of syncAXIS control instances which are concur-
rently allowed on a PC is coded on the Dongle.

0x 80 00 00 00 Bit #31

(MSB)

= 1 InvalidOrMissingDongle The Dongle is either not valid for syncAXIS control or not plugged-
in.

Bit mask Bit Short name Description

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
5 Error Codes with slsc_ctrl_get_error, Log File and Console

282

innovators for industry

5 Error Codes with slsc_ctrl_get_error, Log File and
Console

• See also Chapter 4 ”Standard Return Values of
the syncAXIS-DLL Functions”, page 279.

The following error codes

• 0x 00 00 00 02 00 00 00 01
EXEC_AUTOSTOP

• 0x 00 00 00 02 00 00 00 02
EXEC_BUFFER_UNDERRUN

• 0x 00 00 00 06 00 00 00 01
INIT_ACS_TCPIP

refer to:

• slsc_ctrl_get_error, argument ErrorCode

• Log file (EnableFilelogging true),
see also Chapter 2.8 ”About the Logging in
syncAXIS control”, page 47

• Console (EnableConsoleLogging true)

Notes

• For the specific errors the error constants should
be predefined.

• For interpretation of the 64 bit values:

The values of the upper 32 bits (Bit #63…32)
determine the meaning of the lower 32 bits
(Bit #31…Bit #00 = LSB).

Example: 0x00 00 00 00 nn nn nn nn

=> In the lower bit range, an RTC6 error is coded.
Several bits are set, if multiple errors occurred
(Note: other than with the RTC control command
get_error, here no cumulative error code is
returned!).

• With syncAXIS-DLL no error codes are generated
where simultaneously RTC errors and
syncAXIS control errors are coded.

0x 00 00 00 00 00 00 00 00

Lower bit range
(bit #00 is LSB)

Upper bit range

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
5 Error Codes with slsc_ctrl_get_error, Log File and Console

283

innovators for industry

Code 0x 00 00 00 02 00 00 00 01

Error constant EXEC_AUTOSTOP

Keyword sequence Autostop detected at master. Headstatus NOK! MarkingInfo-Flags …

Cause • 1. Cause in context “Initializing the syncAXIS control instance”
At the respective axis, there is no drive connected or it is not powered.
=> See Remedy on 1. Cause in context “Initializing the
syncAXIS control instance”.

• 2. Cause in context “running operation” and “emergency stop”
During running operation, an “emergency stop” has been triggered by the
user (kill switch), Laser, scan device or positioning stage controller.
=> See Remedy on 2. Cause in context “running operation” and “emer-
gency stop”.

• 3. Cause in context “running operation” and non-adherence to the
positioning stage limits on ACS-side
During running operation, the ACS Motion Controller has detected an
exceedance of the set positioning stage limits.
=> See Remedy on 3. Cause in context “running operation” and non-adher-
ence to the positioning stage limits on ACS-side.

• 4. Cause in context “running operation” and EXEC_BUFFER_UNDERRUN
EXEC_BUFFER_UNDERRUN usually triggers an EXEC_AUTOSTOP as well. In the case of
an EXEC_BUFFER_UNDERRUN the positioning stage is not decelerated in a
controlled manner. Instead, the positioning stage is simply “hard stopped”
which is associated with the violation of positioning stage dynamic limits.
=> See Remedy on 4. Cause in context “running operation” and
EXEC_BUFFER_UNDERRUN.

• 5. Cause in context “running operation” and scan head-related Fehler
During running operation, the scan head does not send the PWROK signal
(“Power OK”), see excelliSCAN Manual.
=> See Remedy on 5. Cause in context “running operation” and scan head-
related Fehler.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
5 Error Codes with slsc_ctrl_get_error, Log File and Console

284

innovators for industry

Remedy • Remedy on 1. Cause in context “Initializing the syncAXIS control instance”
(1) Read out ACS error in ACS SPiiPlus MMI Application Studio.

It reads roughly: “Axis <n> disabled: Error 5027 (Motion termination error),
Servo Processor Alarm“.

(2) Put the affected axis into operation with ACS SPiiPlus MMI Application
Studio.

(3) Make sure that axes configuration is correct in syncAXISConfig.xml,
for example,
<cfg:StageAxisX>0</cfg:StageAxisX>

<cfg:StageAxisY>1</cfg:StageAxisY>

<cfg:SlecEtherCATNodeID>0</cfg:SlecEtherCATNodeID>

• Remedy on 2. Cause in context “running operation” and “emergency stop”
(1) Read out ACS error in ACS SPiiPlus MMI Application Studio.

It reads roughly: “Error 5028 (Motion Termination error), Safe Torque Off“

(2) Reset the effect of the emergency stop switch according to your safety
concept.

(3) Initialize the syncAXIS control instance again.

• Remedy on 3. Cause in context “running operation” and non-adherence to
the positioning stage limits on ACS-side
(1) syncAXIS-DLL checks the dynamic limits and responds as set in

DynamicViolationReaction. With WarningOnly, a [WARN] log file line is written,
see [WARN] log file lines. by which you can see if the exceedance has
been detected by syncAXIS-DLL. With AbortImmediately and StopAndReport,
the Job is cancelled without you getting an error from syncAXIS-DLL.

(2) Read out ACS error in ACS SPiiPlus MMI Application Studio.
With “Error 5015 (Motion termination error), Software Right Limit” the
maximum allowed position has been exceeded

• With “Error 5076 (Motion termination error), Driver Alarm: Drive Saturation”
or “Error 5023 (Motion termination error), Critical Position Error” the
velocity limit has been exceeded

• With “Error Error 5076 (Motion termination error), Driver Alarm: Drive
Saturation” or “Error 5023 (Motion termination error), Critical Position
Error” the acceleration limit has been exceeded

• With “Error 5023 (Motion termination error), Critical Position Error” the
jerk limit has been exceeded

(3) If one of the errors mentioned in (2) is the cause of the EXEC_AUTOSTOP, you
may possibly (only within the safe zone and depending on the process
requirements) increase the maximum allowed position error in
ACS Motion Controller.

Code 0x 00 00 00 02 00 00 00 01

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
5 Error Codes with slsc_ctrl_get_error, Log File and Console

285

innovators for industry

Remedy
(cont’d)

(4) Otherwise you have to adjust the Job. In simulation mode (see
Chapter 2.5 ”About the syncAXIS control Simulation Mode”, page 31)
you must first identify at which point of the Job the dynamic limits are
violated. As described in Chapter 2.6 ”About Optimizing
syncAXIS control-based User Programs”, page 36, you have to make sure
that the violation no longer occurs by iteratively changing the values for
velocities, dynamics and FilterBandwidth.

• Remedy on 4. Cause in context “running operation” and
EXEC_BUFFER_UNDERRUN
Since EXEC_BUFFER_UNDERRUN and EXEC_AUTOSTOP are often associated,
see Section ”Avoiding Buffer Underruns”, page 42.

• Remedy on 5. Cause in context “running operation” and scan head-related
Fehler
– Check whether the scan head answers using iSCANcfg.exe from the

syncAXIS control-software package. If it does not, check the cabling.
– Contact SCANLAB depending on the returned scan head error
– If the scan head temperature was too high, redefine the Job with lower

dynamic requirements.
– Improve the cooling and the thermal connectivity of the scan head.

Comment(s) An indication of the error cause may give the MarkingInfo flags that are also
outputted. These correspond to the return value of the RTC6 command
get_marking_info. Example: If flags are set for the scan head port to which the
positioning stage is connected, then this indicates a problem in the control of
this positioning stage.

Code 0x 00 00 00 02 00 00 00 01

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
5 Error Codes with slsc_ctrl_get_error, Log File and Console

286

innovators for industry

Code 0x 00 00 00 02 00 00 00 02

Error constant EXEC_BUFFER_UNDERRUN

Keyword sequence Buffer underrun detected on RTC …

Cause Buffer underrun, page 11.

Remedy See Section ”Avoiding Buffer Underruns”, page 42.

Comment(s) • EXEC_BUFFER_UNDERRUN usually triggers an EXEC_AUTOSTOP as well.
In the case of an EXEC_BUFFER_UNDERRUN the positioning stage is not decelerated
in a controlled manner. Instead, the positioning stage is simply
“hard stopped” which is associated with the violation of positioning stage
dynamic limits.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
5 Error Codes with slsc_ctrl_get_error, Log File and Console

287

innovators for industry

Code 0x 00 00 00 06 00 00 00 01

Error constant INIT_ACS_TCPIP

Keyword sequence Establishing TCP/IP communication to the ACS controller failed …

Cause • 1. Cause
The entry in syncAXISConfig.xml under <cfg:Configuration>  <cfg:GeneralConfig>

 <cfg:ACSController> is missing or wrong.
=> See Remedy on 1. Cause.

• 2. Cause
Booting of ACS Motion Controller is not yet complete.
=> See Remedy on 2. Cause.

• 3. Cause
Connection to the ACS Motion Controller is faulty.
=> See Remedy on 3. Cause.

• 4. Cause
In ACS SPiiPlus MMI Application Studio, “Network Error” messages are
opened.
=> See Remedy on 4. Cause.

• 5. Cause
Problems with ACS User Mode Driver (UMD).
=> See Remedy on 5. Cause.

• 6. Cause
XL SCAN option is not enabled on ACS Motion Controller.
=> See Remedy on 6. Cause.

Remedy • Remedy on 1. Cause
(1) Identify the ACS Motion Controller IP address with ACS SPiiPlus MMI

Application Studio (for example, #SI” in ACS Communication Terminal).

(2) Correct the entry in syncAXISConfig.xml under <cfg:Configuration> 

<cfg:GeneralConfig>  <cfg:ACSController>.

• Remedy on 2. Cause
(1) A restart can take up to 5 minutes. Wait accordingly.

(2) If the error persists: See Remedy on 3. Cause.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
5 Error Codes with slsc_ctrl_get_error, Log File and Console

288

innovators for industry

Remedy
(cont’d)

• Remedy on 3. Cause
(1) Check, if a connection to ACS Motion Controller via ACS SPiiPlus MMI

Application Studio is possible.

(2) If not: Find and remove errors concerning the network connection.
Possible causes: Defective hardware (network card, network cable, router,
WLAN components), wrong configuration, blocking by a firewall.

(3) If you still cannot establish a connection: Contact ACS Support.

• Remedy on 4. Cause
(1) Try to trace the error with “#LOG” in ACS Communication Terminal.

(2) Find and remove errors concerning the network connection.
Possible causes: Defective hardware (network card, network cable, router,
WLAN components), wrong configuration, blocking by a firewall.

(3) In ACS SPiiPlus MMI Application Studio, increase the
“Communication Timeout”.

(4) If the “Network Error” still persists: Contact ACS support.

• Remedy on 5. Cause
– Restart ACS User Mode Driver (UMD).

• Remedy on 6. Cause
(1) Type “#SI” in ACS Communication Terminal.

(2) “XL SCAN units” must be > 0. If “XL SCAN units” = 0:
Contact ACS Support and request an upgrade.

Comment(s) • –

Code 0x 00 00 00 06 00 00 00 01

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
6 Structures

289

innovators for industry

6 Structures

In this chapter:

• Structure slsc_GeometryConfig

• Structure slsc_MarkConfig

• Structure slsc_MultiParaTarget

• Structure slsc_ParaSection

• Structure slsc_TrajectoryConfig

• Structure VersionInfo

Name of the
structure

slsc_GeometryConfig

Description This structure defines (as part of the Trajectory planning configuration) the behavior of the
blending curves ( V1.4.0: of splines as well).

Used by This structure is used with:

• Structure slsc_TrajectoryConfig

Syntax struct slsc_GeometryConfig
{

double MaxBlendRadius;
double ApproxBlendLimit;
slsc_BlendModes BlendMode;
double VectorResolution;
bool AutoCyclicGeometry;
double SplineConversionLengthLimit;
slsc_SplineModes SplineMode;

};

Argument(s) double MaxBlendRadius See ’R’ in Figure 39, page 292: Radius of
the circle around the corner point (between
two vectors) in which the blending curve is
to be positioned. In the marking result,
blending curves are also limited by the
vector length: Ractual = min (R, l/2).

If the values specified with MaxBlendRadius
and/or ApproxBlendLimit cannot be adhered
to, then the syncAXIS control instance
executes a jump (similar but different as
with RTC-Sky Writing). Important: For
BlendMode = slsc_BlendModes_MinimalBlending,
the MaxBlendRadius value is used as the limit
for the blending curve start.

The corresponding syncAXISConfig.xml tag is
MaxBlendRadius.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
6 Structures

290

innovators for industry

Argument(s)
(cont’d)

double ApproxBlendLimit See ’r’ in Figure 39, page 292: maximum
tolerable mathematical distance of the
blending curve to the corner point.

If the values specified with MaxBlendRadius
and/or ApproxBlendLimit cannot be adhered
to, then the syncAXIS control instance
executes a jump (similar but different as
with RTC-Sky Writing).

By slsc_list_set_approx_blend_limit, the
ApproxBlendLimit value can be changed for a
particular Job. The change applies as of the
insert position but only until the end of the
currently running Job.

The corresponding syncAXISConfig.xml tag is
ApproxBlendLimit.

slsc_BlendModes BlendMode The Blend mode to be applied.

double VectorResolution See Figure 40, page 292: If the
target points of two consecutive
Mark functions (slsc_list_mark_abs,
slsc_list_multi_para_mark_abs,
slsc_list_para_mark_abs) have a smaller
distance than the VectorResolution value,
then these target points are regarded by
the syncAXIS control instance as identical.
That is, with Mark vector  Mark vector
sequences, target points are dismissed
under certain circumstances.

The intended use of VectorResolution is as
follows: users shall be able to specify
target points with a certain input inac-
curacy (for example, with floating points
or, if data is automatically read-in).
Therefore, reasonable values are in the
micrometer range, for example 0.02 mm.

The corresponding syncAXISConfig.xml tag is
VectorResolution.

Name of the
structure

slsc_GeometryConfig

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
6 Structures

291

innovators for industry

Argument(s)
(cont’d)

bool AutoCyclicGeometry Deprecated.
Only use false.

The corresponding syncAXISConfig.xml tag is
AutoCyclicGeometry.

double SplineConversionLengthLimit Deprecated.
Only use / leave the default value.

The corresponding syncAXISConfig.xml tag is
SplineConversionLengthLimit.

slsc_SplineModes SplineMode Deprecated.
Only use slsc_SplineModes_Deactivated.

The corresponding syncAXISConfig.xml tag is
SplineMode.

Comment(s) • In the syncAXIS-DLL, there is the following priority in regards to the calculation of
trajectories: blending curve to corner point > Sky Writing-like motion.

Version info Available as of syncAXIS-DLL V0.11.0.

Name of the
structure

slsc_GeometryConfig

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
6 Structures

292

innovators for industry

39
Structure slsc_GeometryConfig: On the mode of action of the arguments MaxBlendRadius and ApproxBlendLimit.

r = ApproxBlendLimit
R = MaxBlendRadius

r=0R

l/2

R

r

Marking result (red)
with r=0

Marking result (red)
with R>0 and r>0

Mark vectors
as programmed

(black)

M
ar

k v
ec

to
r

len
gt

h
= l

40
Structure slsc_GeometryConfig: On the mode of action of the argument VectorResolution in  V1.2.

+50+40+30+20–20 +10–10 0

–20

–10

+10

+20

+50+40+30+20–20 +10–10 0

–20

–10

+10

+20

+50+40+30+20–20 +10–10 0

–20

–10

+10

+20 *
20,0 µm

22,3
µm*

14,
1 µ

m
14,1 µm22,3

µm*
14,

1 µ
m

14,1 µm22,3
µm

Jump vectors: Dashed lines
Mark vectors: Solid lines
*: Does not apply to mark vectors which are followed by a jump vector.

x Position [µm]

y Position [µm]

x Position [µm]

y Position [µm]

x Position [µm]

y Position [µm]

Marking result (red) with
VectorResolution value 15 µm

1 mark vector is shorter
=> dismissed target point*!

Marking result (red) with
VectorResolution value 14 µm.

All mark vectors are longer
=> no dismissed target point.

Mark & jump vectors
as programmed

(black)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
6 Structures

293

innovators for industry

Name of the
structure

slsc_MarkConfig

Description This structure defines the basic settings of the Trajectory planning for markings,
for example, laser switching times.

Used by This structure is used with:

• Structure slsc_TrajectoryConfig

Syntax struct slsc_MarkConfig
{

double LaserPreTriggerTime;
double LaserSwitchOffsetTime;
double LaserMinOffTime;
double JumpSpeed;
double MarkSpeed;
double MinimalMarkSpeed;

};

Argument(s) double LaserPreTriggerTime See Figure 41, page 295: Time to trigger the
laser signal in advance, if a Mark Segment is
executed. Unit: s.
The corresponding syncAXISConfig.xml tag is
LaserPreTriggerTime.
Related RTC6 command: set_laser_delays
(similarities to LaserOn delay and
LaserOff delay exist, see RTC6 Manual,
Chapter 7.2.1 ”Laser Delays”, page 144).

double LaserSwitchOffsetTime See Figure 41, page 295: Time shift for the
laser signals output. Unit: s.
The corresponding syncAXISConfig.xml tag is
LaserSwitchOffsetTime.
Related RTC6 command: set_laser_delays
(similarities to LaserOn delay and
LaserOff delay exist, see RTC6 Manual,
Chapter 7.2.1 ”Laser Delays”, page 144).

double LaserMinOffTime See Figure 42, page 296 ((1): Shortest
“Laser Standby” Operation duration.
Unit: s.
The corresponding syncAXISConfig.xml tag is
LaserMinOffTime.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
6 Structures

294

innovators for industry

Argument(s)
(cont’d)

double JumpSpeed Desired combined jump speed (that is,
combined scanner and positioning stage
motion) during Job execution. In StageOnly
mode, this speed is strictly adhered to as
maximum speed, otherwise the value may
be slightly exceeded temporarily.
As of  V1.5.0, the following applies: In
Operation mode “StageOnly”, this speed is
strictly adhered to as the maximum speed.
In the Operation mode “ScannerOnly” and
“ScannerAndStage”, the value can even be
temporarily exceeded slightly.
The corresponding syncAXISConfig.xml tag is
JumpSpeed.

double MarkSpeed The highest desired combined
marking speed (that is, combined scanner
and positioning stage motion) during Job
execution.
There may be cases with blending curves at
corner points where the
syncAXIS control instance must apply a
lower speed. Then at least the value of
MinimalMarkSpeed is used.
The corresponding syncAXISConfig.xml tag is
MarkSpeed.

double MinimalMarkSpeed The lowest desired spot velocity that shall
be reached in corners of the contour. With
blending curves at corner points – in order
to make rounded edges possible – the
syncAXIS control instance is allowed to
slow down to this speed. See MarkSpeed. If a
exact defined corner blending cannot be
performed with the known scanner and
positioning stage dynamics with at least this
minimal marking speed, a Sky Writing-like
motion is executed.
The corresponding syncAXISConfig.xml tag is
MinimalMarkSpeed.

Comment(s) • –

Version info Available as of syncAXIS-DLL V0.11.0.

Name of the
structure

slsc_MarkConfig

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
6 Structures

295

innovators for industry

41
Structure slsc_MarkConfig: On the mode of action of the arguments LaserPreTriggerTime and
LaserSwitchOffsetTime.

0

Laser

0

Laser

LaserSwitchOffsetTime = +2
LaserPreTriggerTime = +2

LaserSwitchOffsetTime = 0
LaserPreTriggerTime = +2

LaserSwitchOffsetTime = 0
LaserPreTriggerTime = 0

LaserSwitchOffsetTime

LaserPreTriggerTime

0

Laser

0

Laser

Example 3

TimeMark command

Example 2

TimeMark command

Example 1

TimeMark command

Meaning

TimeMark command

moves
"on" and "off"

moves
only "on"

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
6 Structures

296

innovators for industry

42
Minimum Duration of “Laser Standby” Operation and “Laser Active” Operation.

4

3

2

1

≥ 1 µs

≥ 1 µs

≥ 1/64 µs

≥ 1/64 µs

Time

Legend
1. The shortest “Laser Standby” Operation duration (and thus the shortest duration of Jump Segments)

is:
– The LaserMinOffTime value
syncAXIS-DLL extends Jump Segments and Sky Writing-like motions accordingly, if they are shorter
than specified above. The smallest allowed LaserMinOffTime value is 1/64 µs.

2. The shortest “Laser Active” Operation duration (and thus the shortest duration of Mark Segments)
is:
– Always 1/64 µs

3. “Laser Active” Operation starts must always be at least 1 µs apart
Otherwise, the following applies:
– With [*]dashed[*] Functions, syncAXIS-DLL rejects them
– With Jump Segments, syncAXIS-DLL extends their duration accordingly

4. “Laser Standby” Operation starts must always be at least 1 µs apart
Otherwise, the following applies:
– Same as 3

“Laser Active” Operation

“Laser Standby” Operation

“Laser Active” Operation

“Laser Standby” Operation

“Laser Active” Operation

“Laser Standby” Operation

“Laser Active” Operation

“Laser Standby” Operation

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
6 Structures

297

innovators for industry

Name of the
structure

slsc_MultiParaTarget

Description This structure defines a Ramp, which consists of several sections (these are defined with
slsc_ParaSection).

Used by This structure is used with:

• slsc_list_multi_para_arc_abs

• slsc_list_multi_para_circle_2d_abs

• slsc_list_multi_para_dashed_arc_abs

• slsc_list_multi_para_dashed_circle_2d_abs

• slsc_list_multi_para_dashed_mark_abs

• slsc_list_multi_para_mark_abs

Syntax struct slsc_MultiParaTarget
{

slsc_ParaSection* Targets;
size_t NumParaTargets;

};

Argument(s) slsc_ParaSection* Targets Pointer to an array of variable size
(which is specified in NumParaTargets).

size_t NumParaTargets Number of elements in Targets.

Comment(s) • See also Section ”About Ramps”, page 53.

Version info Available as of syncAXIS-DLL V0.11.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
6 Structures

298

innovators for industry

Name of the
structure

slsc_ParaSection

Description This structure defines one section of the Ramp (which is defined by slsc_MultiParaTarget).

Used by This structure is used with:

• Structure slsc_MultiParaTarget

Syntax struct slsc_ParaSection
{

double ds;
double MultiParaTarget;

};

Argument(s) double ds Length of the section (with respect to the
vector length/arc length). 0 is also allowed
(=step change). In mm.

double MultiParaTarget Factor lp at the end of ds. No unit.
On Factor lp, see Section ”About how
ActiveChannel Values along a Contour are
Calculated”, page 51.

Comment(s) • This structure is also suitable for defining Ramps with sawtooth and square profile, see
also Section ”About Ramps”, page 53.

Version info Available as of syncAXIS-DLL V0.11.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
6 Structures

299

innovators for industry

Name of the
structure

slsc_TrajectoryConfig

Description This structure defines the configuration of the Trajectory planning.

Used by This structure is used with:

• slsc_cfg_delete_trajectory_config

• slsc_cfg_get_trajectory_config

• slsc_cfg_set_trajectory_config

Syntax struct slsc_TrajectoryConfig
{

slsc_MarkConfig MarkConfig;
slsc_GeometryConfig GeometryConfig;

};

Argument(s) slsc_MarkConfig MarkConfig Configures the basic settings for markings.

slsc_GeometryConfig GeometryConfig Configures the behavior of blending curves
( V1.4.0: of splines as well).

Comment(s) • –

Version info Available as of syncAXIS-DLL V0.11.0.

Name of the
structure

VersionInfo

Description This structure defines the three number blocks of the syncAXIS-DLL version
(“Version n.n.n”).

Used by This structure is used with:

• slsc_cfg_get_sync_axis_version

Syntax struct VersionInfo
{

uint32_t Major;
uint32_t Minor;
uint32_t Revision;

};

Argument(s) uint32_t Major Major version of the syncAXIS-DLL.

uint32_t Minor Minor version of the syncAXIS-DLL.

uint32_t Revision Revision of the syncAXIS-DLL.

Comment(s) • –

Version info Available as of syncAXIS-DLL V0.1.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

300

innovators for industry

7 Enumerated Types enum

In this chapter:

• enum slsc_AnalogOutput

• enum slsc_BlendModes

• enum slsc_DynamicsMonitoringLevel

• enum slsc_DynamicViolationReaction

• enum slsc_ExecState

• enum slsc_JobCharacteristic

• enum slsc_ListHandlingMode

• enum slsc_MeasurementSignal

• enum slsc_OperationMode

• enum slsc_OperationStatus

• enum slsc_PositionType

• enum slsc_ScanDevice

• enum slsc_SimulationSetting

• enum slsc_SplineModes

• enum slsc_Stage

Name of the
enum

slsc_AnalogOutput

Description This enum defines the choices for:

• The analog output ports

Used by This enum is used with:

• slsc_ctrl_write_analog_x

• slsc_list_write_analog_x

Syntax enum slsc_AnalogOutput
{

slsc_AnalogOutput_1 =0,
slsc_AnalogOutput_2 =1,

};

Enumeration
constant(s)

slsc_AnalogOutput_1 Analog output port 1.

slsc_AnalogOutput_2 Analog output port 2.

Version info Available as of syncAXIS-DLL V0.11.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

301

innovators for industry

Name of the
enum

slsc_BlendModes

Description This enum defines the choices for:

• The blend mode

Used by This enum is used with:

• slsc_GeometryConfig

Syntax enum slsc_BlendModes
{

slsc_BlendModes_Deactivated = 0,
slsc_BlendModes_VariableBlending = 1,
slsc_BlendModes_MinimalBlending = 2,
slsc_BlendModes_FixedBlending = 3,

};

Enumeration
constant(s)

slsc_BlendModes_Deactivated This parameter is effective with successions of:

• mark vector  mark vector

• mark vector  circle

• circle mark vector

The syncAXIS-DLL inserts a Sky Writing-like motion at each
of these successions (“corner point“) which the system
cannot travel (that is, if the dynamic values there were no
longer in the permissible range).

See syncAXISConfig.xml tag BlendMode. Mandatory notation,
if used there:

Deactivated

slsc_BlendModes_VariableBlending In the latest syncAXIS-DLL, this parameter is only effective
with successions of mark vector  mark vector.

The syncAXIS-DLL tries to insert a blending curve at each
corner point of mark vector  mark vector. These
blending curves are always calculated to have the greatest
distance. That is, with MaxBlendRadius (with structure
slsc_GeometryConfig) the value min (R, l/2) is always
observed.

slsc_BlendModes_VariableBlending has a shorter computing
time than slsc_BlendModes_MinimalBlending.

See syncAXISConfig.xml tag BlendMode. Mandatory notation,
if used there:

VariableBlending

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

302

innovators for industry

Enumeration
constant(s)
(cont’d)

slsc_BlendModes_MinimalBlending In the latest syncAXIS-DLL, this parameter is only effective
with successions of mark vector  mark vector.

The syncAXIS-DLL tries to insert a blending curve at each
corner point of mark vector  mark vector. These
blending curves are always calculated to have the
smallest, but still executable distance.

slsc_BlendModes_MinimalBlending has a longer computing
time than slsc_BlendModes_VariableBlending.

See syncAXISConfig.xml tag BlendMode. Mandatory notation,
if used there:

MinimalBlending

slsc_BlendModes_FixedBlending Deprecated.

In the latest syncAXIS-DLL, this parameter is only effective
with successions of:
mark vector  mark vector

syncAXIS-DLL converts these consecutive lines into a
composite spline. Note, this is a totally different behavior
as with slsc_BlendModes_VariableBlending and
slsc_BlendModes_MinimalBlending).

See syncAXISConfig.xml tag BlendMode. Mandatory notation,
if used there:

FixedBlending

Version info Available as of syncAXIS-DLL V0.4.2.

Name of the
enum

slsc_BlendModes

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

303

innovators for industry

Name of the
enum

slsc_DynamicsMonitoringLevel

Description This enum defines the choices for:

• The dynamics parameters to be monitored

Used by This enum is used with:

• slsc_cfg_get_scan_device_dynamic_monitoring_level

• slsc_cfg_get_stage_dynamic_monitoring_level

• slsc_cfg_set_scan_device_dynamic_monitoring_level

• slsc_cfg_set_stage_dynamic_monitoring_level

Syntax enum slsc_DynamicsMonitoringLevel
{

slsc_DynamicsMonitoringLevel_Deactivated =0,
slsc_DynamicsMonitoringLevel_Position =1,
slsc_DynamicsMonitoringLevel_Velocity =2,
slsc_DynamicsMonitoringLevel_Acceleration =3,
slsc_DynamicsMonitoringLevel_Jerk =4,

};

Enumeration
constant(s)

slsc_DynamicsMonitoringLevel
_Deactivated

No monitoring is to take place.
See syncAXISConfig.xml tag MonitoringLevel. Mandatory
notation, if used there:

Deactivated

slsc_DynamicsMonitoringLevel
_Position

Exceedances of X and Y position values (working field limits)
are to be monitored.
See syncAXISConfig.xml tag MonitoringLevel. Mandatory
notation, if used there:

Position

slsc_DynamicsMonitoringLevel
_Velocity

Like slsc_DynamicsMonitoringLevel_Position and additionally:
exceedances of velocity (dynamic limits) are to be monitored.
See syncAXISConfig.xml tag MonitoringLevel. Mandatory
notation, if used there:

Velocity

slsc_DynamicsMonitoringLevel
_Acceleration

Like slsc_DynamicsMonitoringLevel_Velocity and additionally:
exceedances of acceleration (dynamic limits) are to be moni-
tored.
See syncAXISConfig.xml tag MonitoringLevel. Mandatory
notation, if used there:

Acceleration

slsc_DynamicsMonitoringLevel
_Jerk

Like slsc_DynamicsMonitoringLevel_Acceleration and additionally:
exceedances of jerk (dynamic limits) are to be monitored.
See syncAXISConfig.xml tag MonitoringLevel. Mandatory
notation, if used there:

Jerk

Version info Available as of syncAXIS-DLL V1.5.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

304

innovators for industry

Name of the
enum

slsc_DynamicViolationReaction

Description This enum defines the choices for:

• The reaction when a limit value exceedance occurs

Used by This enum is used with:

• slsc_cfg_get_dynamic_violation_reaction

• slsc_cfg_set_dynamic_violation_reaction

Syntax enum slsc_DynamicViolationReaction
{

slsc_DynamicViolationReaction_WarningOnly =0,
slsc_DynamicViolationReaction_AbortImmediately =1,
slsc_DynamicViolationReaction_StopAndReport =2,

};

Enumeration
constant(s)

slsc_DynamicViolationReaction_
WarningOnly

[WARN] log file lines are to be generated only.
See syncAXISConfig.xml tag DynamicViolationReaction.
Mandatory notation, if used there:

WarningOnly

slsc_DynamicViolationReaction_
AbortImmediately

It is to be aborted immediately. This will (espe-
cially in Operation mode “StageOnly” and
“ScannerAndStage”) cause the process to abort
(“emergency stop“). ACS control (if correspond-
ingly configured) enters an error state.
See syncAXISConfig.xml tag DynamicViolationReaction.
Mandatory notation, if used there:

AbortImmediately

slsc_DynamicViolationReaction_
StopAndReport

Before aborting, an attempt is first made to
perform a deceleration movement in order to
stop (This deceleration movement is visible when
the corresponding simulation file is displayed in
syncAXIS Viewer.). Then, the
syncAXIS control instance enters an error state.
Therefore, users must reinitialize the
syncAXIS control instance. In contrast, the
ACS control usually does not enter an error state.
See syncAXISConfig.xml tag DynamicViolationReaction.
Mandatory notation, if used there:

StopAndReport

Version info Available as of syncAXIS-DLL V1.5.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

305

innovators for industry

Name of the
enum

slsc_ExecState

Description This enum defines the choices for:

• The status of the Execution Layer

Used by This enum is used with:

• slsc_ctrl_get_exec_state

Syntax enum slsc_ExecState
{

slsc_ExecState_Idle =0,
slsc_ExecState_ReadyForExecution =1,
slsc_ExecState_Executing =2,
slsc_ExecState_NotInitOrError =3,

};

Enumeration
constant(s)

slsc_ExecState_Idle The RTC6 board is idle.

slsc_ExecState_ReadyForExecution The RTC6 board is ready to execute Jobs.

slsc_ExecState_Executing The RTC6 board is executing a Job.

slsc_ExecState_NotInitOrError The RTC6 board is not initialized or an error is present.

Version info Available as of syncAXIS-DLL V0.11.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

306

innovators for industry

Name of the
enum

slsc_JobCharacteristic

Description This enum defines the choices for:

• The Job characteristic (“Key“)

It refers to the Job-ID specified with slsc_ctrl_get_job_characteristic
(that is, is “Job-related”).
Because the Job characteristic values are calculated by the Trajectory planning, the status
of this Job-ID must have been reached “Calculation: Finished” (see Figure 12, page 43).

See also Figure 43, page 311.

Used by This enum is used with:

• slsc_ctrl_get_job_characteristic

Syntax enum slsc_JobCharacteristic
{

slsc_JobCharacteristic_ScannerPosX = 0,
slsc_JobCharacteristic_ScannerPosY = 1,
slsc_JobCharacteristic_StagePosX = 2,
slsc_JobCharacteristic_StagePosY = 3,
slsc_JobCharacteristic_ScannerVelX = 4,
slsc_JobCharacteristic_ScannerVelY = 5,
slsc_JobCharacteristic_StageVelX = 6,
slsc_JobCharacteristic_StageVelY = 7,
slsc_JobCharacteristic_ScannerAccX = 8,
slsc_JobCharacteristic_ScannerAccY = 9,
slsc_JobCharacteristic_StageAccX = 10,
slsc_JobCharacteristic_StageAccY = 11,
slsc_JobCharacteristic_StageJerkX = 12,
slsc_JobCharacteristic_StageJerkY = 13,
slsc_JobCharacteristic_MotionMicroSteps = 14,
slsc_JobCharacteristic_ScannerPosXLaserOn = 30,
slsc_JobCharacteristic_ScannerPosYLaserOn = 31,
slsc_JobCharacteristic_StagePosXLaserOn = 32,
slsc_JobCharacteristic_StagePosYLaserOn = 33,
slsc_JobCharacteristic_MinimalMarkSpeed = 50,
slsc_JobCharacteristic_MaximalMarkSpeed = 51,
slsc_JobCharacteristic_InsertedSkywritings = 200,
slsc_JobCharacteristic_ScannerPosXmax = 251,
slsc_JobCharacteristic_ScannerPosXmin = 252,
slsc_JobCharacteristic_ScannerPosYmax = 253,
slsc_JobCharacteristic_ScannerPosYmin = 254,
slsc_JobCharacteristic_ScannerPosXmaxLaserOn = 255,
slsc_JobCharacteristic_ScannerPosXminLaserOn = 256,
slsc_JobCharacteristic_ScannerPosYmaxLaserOn = 257,
slsc_JobCharacteristic_ScannerPosYminLaserOn = 258,
slsc_JobCharacteristic_StagePosXmax = 259,
slsc_JobCharacteristic_StagePosXmin = 260,
slsc_JobCharacteristic_StagePosYmax = 261,
slsc_JobCharacteristic_StagePosYmin = 262,
slsc_JobCharacteristic_StagePosXmaxLaserOn = 263,
slsc_JobCharacteristic_StagePosXminLaserOn = 264,
slsc_JobCharacteristic_StagePosYmaxLaserOn = 265,
slsc_JobCharacteristic_StagePosYminLaserOn = 266,

};

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

307

innovators for industry

Enumeration
constant(s)

slsc_JobCharacteristic_
ScannerPosX

Max. distance of the scan head to zero position (without offset,
see Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332). In x direction.
In mm.

Notes

• Defined offsets (see Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332) are included
in the values and are not compensated.

• Value calculated in the Trajectory planning. The actual
executed value can deviate (for example, because of the
RTC6 correction file).

slsc_JobCharacteristic_
ScannerPosY

Max. distance of the scan head to zero position (without offset,
see Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332). In y direction.
In mm.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
StagePosX

Max. distance of the positioning stage to zero position (without
offset, see Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332). In x direction.
In mm.

Notes

• Defined offsets (see Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332) are included
in the values and are not compensated.

• Value calculated in the Trajectory planning. The actual
executed value can deviate (for example, because of
downstream operations, for example in the ACS control system
such as error corrections).

slsc_JobCharacteristic_
StagePosY

Max. distance of the positioning stage to zero position (without
offset, see Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332). In y direction.
In mm.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
ScannerVelX

Absolute value of the max. scan head velocity.
In x direction. In mm/s.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
ScannerVelY

Absolute value of the max. scan head velocity.
In y direction. In mm/s.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

Name of the
enum

slsc_JobCharacteristic

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

308

innovators for industry

Enumeration
constant(s)
(cont’d)

slsc_JobCharacteristic_
StageVelX

Absolute value of the max. positioning stage velocity.
In x direction. In mm/s.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StageVelY

Absolute value of the max. positioning stage velocity.
In y direction. In mm/s.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
ScannerAccX

Absolute value of the max. scan head acceleration.
In x direction. In mm/s².
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
ScannerAccY

Absolute value of the max. scan head acceleration.
In y direction. In mm/s².
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
StageAccX

Absolute value of the max. positioning stage acceleration.
In x direction. In mm/s².
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StageAccY

Absolute value of the max. positioning stage acceleration.
In y direction. In mm/s².
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StageJerkX

Absolute value of the max. positioning stage jerk.
In x direction. In mm/s³.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StageJerkY

Absolute value of the max. positioning stage jerk.
In y direction. In mm/s³.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
MotionMicroSteps

Number of micro vectors that make up the Job.
Value calculated in the Trajectory planning.
Hence, slsc_JobCharacteristic_MotionMicroSteps correspond to the
minimum duration of the Job (1 micro vector = 10 µs). But the
actual execution time may be longer (due to subsequent opera-
tions in the system, therefore, a quantitative statement cannot be
made here). In particular, slsc_JobCharacteristic_MotionMicroSteps is
useful to evaluate the effects of parameter permutations (in the
context of optimizing steps).

slsc_JobCharacteristic_
ScannerPosXLaserOn

Absolute value of the max. scan head position.
In x direction. With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
ScannerPosYLaserOn

Absolute value of the max. scan head position.
In y direction. With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

Name of the
enum

slsc_JobCharacteristic

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

309

innovators for industry

Enumeration
constant(s)
(cont’d)

slsc_JobCharacteristic_
StagePosXLaserOn

Absolute value of the max. positioning stage position.
In x direction. With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StagePosYLaserOn

Absolute value of the max. positioning stage position.
In y direction. With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_StagePosX apply.

Enumeration
constant(s)
(cont’d)

slsc_JobCharacteristic_
MinimalMarkSpeed

The minimum marking speed during the Job. Only those parts are
taken into account in which the laser is switched on (laser spot
speed).

slsc_JobCharacteristic_
MaximalMarkSpeed

The maximum marking speed during the Job. Only those parts are
taken into account in which the laser is switched on (laser spot
speed).

slsc_JobCharacteristic_
InsertedSkywritings

Applies to the following successions in the Job only:

• mark vector  mark vector

• mark vector  arc

• arc  mark vector

• arc  arc

Number of successions in which a Sky Writing-like motion has been
inserted (because a direct crossing would violate the dynamic limits
and also a blending cannot be implemented).

slsc_JobCharacteristic_
ScannerPosXmax

Max. scan head position. In x direction.
In mm.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
ScannerPosXmin

Min. scan head position. In x direction.
In mm.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
ScannerPosYmax

Max. scan head position. In y direction.
In mm.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
ScannerPosYmin

Min. scan head position. In y direction.
In mm.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
ScannerPosXmaxLaserOn

Max. scan head position. In x direction.
With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
ScannerPosXminLaserOn

Min. scan head position. In x direction.
With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
ScannerPosYmaxLaserOn

Max. scan head position. In y direction.
With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

Name of the
enum

slsc_JobCharacteristic

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

310

innovators for industry

Enumeration
constant(s)
(cont’d)

slsc_JobCharacteristic_
ScannerPosYminLaserOn

Min. scan head position. In y direction.
With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_ScannerPosX apply.

slsc_JobCharacteristic_
StagePosXmax

Max. positioning stage position. In x direction.
In mm.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StagePosXmin

Min. positioning stage position. In x direction.
In mm.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StagePosYmax

Max. positioning stage position. In y direction.
In mm.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StagePosYmin

Min. positioning stage position. In y direction.
In mm.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StagePosXmaxLaserOn

Max. positioning stage position. In x direction.
With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StagePosXminLaserOn

Min. positioning stage position. In x direction.
With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StagePosYmaxLaserOn

Max. positioning stage position. In y direction.
With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_StagePosX apply.

slsc_JobCharacteristic_
StagePosYminLaserOn

Min. positioning stage position. In y direction.
With laser switched on. In mm.
The Notes at slsc_JobCharacteristic_StagePosX apply.

Version info Available as of syncAXIS-DLL V1.5.0.

Name of the
enum

slsc_JobCharacteristic

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

311

innovators for industry

43
enum slsc_JobCharacteristic. Example value returns.

+60+50+40+30+20+100-10-20-30-40-50-60
x

+60

+50

+40

+30

+20

+10

0

-10

-20

-30

-40

-50

-60

y

Jump

Marking

slsc_JobCharacteristic_ScannerPosY = +40
slsc_JobCharacteristic_ScannerPosYmax = +40
slsc_JobCharacteristic_StagePosY = +40
slsc_JobCharacteristic_StagePosYmax = +40

slsc_JobCharacteristic_ScannerPosYLaserOn = +30
slsc_JobCharacteristic_ScannerPosYmaxLaserOn = +30
slsc_JobCharacteristic_StagePosYLaserOn = +30
slsc_JobCharacteristic_StagePosYmaxLaserOn = +30

slsc_JobCharacteristic_ScannerPosXmax = +30
slsc_JobCharacteristic_StagePosXmax = +30

slsc_JobCharacteristic_ScannerPosXmaxLaserOn = +20
slsc_JobCharacteristic_StagePosXmaxLaserOn = +20

slsc_JobCharacteristic_ScannerPosXLaserOn = |–40|
slsc_JobCharacteristic_ScannerPosXminLaserOn = –40
slsc_JobCharacteristic_ScannerPosYminLaserOn = –28
slsc_JobCharacteristic_StagePosXLaserOn = |–40|
slsc_JobCharacteristic_StagePosXminLaserOn = –40
slsc_JobCharacteristic_StagePosYminLaserOn = –28

slsc_JobCharacteristic_ScannerPosYmin = –35
slsc_JobCharacteristic_StagePosYmin = –35

slsc_JobCharacteristic_ScannerPosX = |–50|
slsc_JobCharacteristic_ScannerPosXmin = –50
slsc_JobCharacteristic_StagePosXmin = –50
slsc_JobCharacteristic_StagePosX = |–50|

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

312

innovators for industry

Name of the
enum

slsc_ListHandlingMode

Description This enum defines the choices for:

• The return behavior of the Job functions (slsc_list_*)

Used by This enum is used with:

• slsc_cfg_set_list_handling_mode

• slsc_cfg_set_list_handling_mode_with_context

Syntax enum slsc_ListHandlingMode
{

slsc_ListHandlingMode_ReturnAtOnce =0,
slsc_ListHandlingMode_RepeatWhileBufferFull =1,
slsc_ListHandlingMode_RepeatWhilePredicate =2,

};

Enumeration
constant(s)

slsc_ListHandlingMode_ReturnAtOnce No list handling.

See syncAXISConfig.xml tag
InitialListHandlingMode. Mandatory notation, if
used there:

ReturnAtOnce

slsc_ListHandlingMode_RepeatWhileBufferFull It is tried to execute the Job function until the
return value indicates that Bit #04 is not set
any more (no longer BUFFER_FULL).
Errors are returned nevertheless.

See syncAXISConfig.xml tag
InitialListHandlingMode. Mandatory notation, if
used there:

RepeatWhileBufferFull

slsc_ListHandlingMode_RepeatWhilePredicate It is tried to execute the Job function until the
return value of the Predicate function is no
longer true.

See syncAXISConfig.xml tag
InitialListHandlingMode. Mandatory notation, if
used there:

RepeatWhilePredicate

Version info Available as of syncAXIS-DLL V0.11.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

313

innovators for industry

Name of the
enum

slsc_MeasurementSignal

Description This enum defines the choices for:

• The measurement signals

Used by This enum is used with:

• slsc_ctrl_get_value

Syntax enum slsc_MeasurementSignal
{

slsc_MeasurementSignal_Status =0,
slsc_MeasurementSignal_Sample =1,
slsc_MeasurementSignal_AnalogOutput_1 =2,
slsc_MeasurementSignal_AnalogOutput_2 =3,
slsc_MeasurementSignal_Errors =4,

};

Enumeration
constant(s)

slsc_MeasurementSignal_Status Deprecated. As of syncAXIS-DLL V1.2.0, enum
slsc_PositionType is available.
[Meaning in  V1.1: Reserved.]

slsc_MeasurementSignal_Sample Deprecated. As of syncAXIS-DLL V1.2.0, enum
slsc_PositionType is available.
[Meaning in  V1.1: Position value
(commanded by the RTC6) of the specified axis.
With scan head: deflection in the image field.
In mm. With positioning stage: position value.
In mm.]

slsc_MeasurementSignal_AnalogOutput_1 Value at the analog output port 1.

slsc_MeasurementSignal_AnalogOutput_2 Value at the analog output port 2.

slsc_MeasurementSignal_Errors Reserved.

Version info Available as of syncAXIS-DLL V0.11.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

314

innovators for industry

Name of the
enum

slsc_OperationMode

Description This enum defines the choices for:

• The Operation mode of the syncAXIS control instance

Used by This enum is used with:

• slsc_cfg_get_mode

• slsc_cfg_set_mode

Syntax enum slsc_OperationMode
{

slsc_OperationMode_ScannerOnly =0,
slsc_OperationMode_StageOnly =1,
slsc_OperationMode_ScannerAndStage =2,

};

Enumeration
constant(s)

slsc_OperationMode_ScannerOnly Only scan head, no positioning stage.

The speed limits are given by JumpSpeed and MarkSpeed.
In this Operation mode, however, the dynamic is
restricted by the scanner dynamic limits.

See syncAXISConfig.xml tag InitialOperationMode.
Mandatory notation, if used there:

ScannerOnly

slsc_OperationMode_StageOnly Only positioning stage, no scan head.

The speed limits are given by JumpSpeed and MarkSpeed.
In this Operation mode, however, the dynamic is
restricted by the reduced positioning stage dynamic
limits. This speed limit is limited in particular by the
maximum positioning stage speed.

See syncAXISConfig.xml tag InitialOperationMode.
Mandatory notation, if used there:

StageOnly

slsc_OperationMode_ScannerAndStage Both, scan head and positioning stage.

The speed limits are given by JumpSpeed and MarkSpeed.
In this Operation mode, however, the dynamic is
restricted by the scanner dynamic limits and is influ-
enced by further Heuristics.

See syncAXISConfig.xml tag InitialOperationMode.
Mandatory notation, if used there:

ScannerAndStage

Version info Available as of syncAXIS-DLL V0.11.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

315

innovators for industry

Name of the
enum

slsc_OperationStatus

Description This enum defines the choices for:

• For the operation status of the syncAXIS control instance

Used by This enum is used with:

• slsc_cfg_get_operation_status

Syntax enum slsc_OperationStatus
{

slsc_OperationStatus_Green =0,
slsc_OperationStatus_Yellow =1,
slsc_OperationStatus_Red =2,

};

Enumeration
constant(s)

slsc_OperationStatus_Green Operation status “green“:
the syncAXIS control instance is running and no errors
occurred.

slsc_OperationStatus_Yellow Operation status “yellow“:
the syncAXIS control instance is not yet running
because the initialization is still in progress.

slsc_OperationStatus_Red Operation status “red“:
the syncAXIS control instance is not running and at
least one error occurred.

Version info Available as of syncAXIS-DLL V0.11.0.

Name of the
enum

slsc_PositionType

Description This enum defines the choices for:

• The position type

Used by This enum is used with:

• slsc_ctrl_get_scan_device_position

• slsc_ctrl_get_stage_position

Syntax enum slsc_PositionType
{

slsc_PositionType_Set = 0,
slsc_PositionType_Actual = 1,

};

Enumeration
constant(s)

slsc_PositionType_Set Set position.

slsc_PositionType_Actual Actual position.

Version info Available as of syncAXIS-DLL V1.2.4.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

316

innovators for industry

Name of the
enum

slsc_ScanDevice

Description This enum defines the choices for:

• The scan device to which a particular setting (for example, a transformation) is to be
applied

Used by This enum is used with:

• slsc_cfg_set_part_displacement

Syntax enum slsc_ScanDevice
{

slsc_ScanDevice_None = 0,
slsc_ScanDevice1 = 1,
slsc_ScanDevice2 = 2,
slsc_ScanDevice3 = 3,
slsc_ScanDevice4 = 4,

};

Enumeration
constant(s)

slsc_ScanDevice_None No scan device.

See syncAXISConfig.xml tag HeadA, HeadB, ScanDevice.
Mandatory notation, if used there:

None

slsc_ScanDevice1 Scan device 1.

See syncAXISConfig.xml tag HeadA, HeadB, ScanDevice.
Mandatory notation, if used there:

ScanDevice1

slsc_ScanDevice2 Scan device 2.

See syncAXISConfig.xml tag HeadA, HeadB, ScanDevice.
Mandatory notation, if used there:

ScanDevice2

slsc_ScanDevice3 Scan device 3.

See syncAXISConfig.xml tag HeadA, HeadB, ScanDevice.
Mandatory notation, if used there:

ScanDevice3

slsc_ScanDevice4 Scan device 4.

See syncAXISConfig.xml tag HeadA, HeadB, ScanDevice.
Mandatory notation, if used there:

ScanDevice4

Version info Available as of syncAXIS-DLL V1.3.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

317

innovators for industry

Name of the
enum

slsc_SimulationSetting

Description This enum defines the choices for:

• The Simulation Setting of the syncAXIS control instance

Used by This enum is used with:

• slsc_cfg_get_simulation_setting

• slsc_cfg_set_simulation_setting

Syntax enum slsc_SimulationSetting
{

slsc_SimulationSetting_SimulationMode =0,
slsc_SimulationSetting_HardwareMode =1,

};

Enumeration
constant(s)

slsc_SimulationSetting_SimulationMode The syncAXIS control instance does not attempt to
connect to any hardware and merely simulates Jobs
on the PC.

See syncAXISConfig.xml tag SimulationMode true.

slsc_SimulationSetting_HardwareMode The syncAXIS control instance is going to connect to
all hardware and to physically execute Jobs.

See syncAXISConfig.xml tag SimulationMode false.

Version info Available as of syncAXIS-DLL V1.5.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

318

innovators for industry

Name of the
enum

slsc_SplineModes

Description This enum defines the choices for:

• The spline mode ( V1.4.0)

Used by This enum is used with:

• Structure slsc_GeometryConfig

Syntax enum slsc_SplineModes
{

slsc_SplineModes_Deactivated = 0,
slsc_SplineModes_Interpolating = 1,
slsc_SplineModes_Approximating = 2,

};

Enumeration
constant(s)

slsc_SplineModes_Deactivated Recommended setting. No splines, see
Figure 44, page 319.

See syncAXISConfig.xml tag SplineMode. Mandatory
notation, if used there:

Deactivated

slsc_SplineModes_Interpolating Deprecated.
Interpolating splines were used,
see Figure 44, page 319.

See syncAXISConfig.xml tag SplineMode. Mandatory
notation, if used there:

Interpolating

slsc_SplineModes_Approximating Deprecated.
Approximating splines were used,
see Figure 44, page 319.

See syncAXISConfig.xml tag SplineMode. Mandatory
notation, if used there:

Approximating

Version info Available as of syncAXIS-DLL V0.11.0.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

319

innovators for industry

44
enum slsc_SplineModes: On the mode of action of the arguments slsc_SplineModes_Deactivated,
slsc_SplineModes_Interpolating and slsc_SplineModes_Approximating.

slsc_SplineModes_Approximating

slsc_SplineModes_Interpolating

slsc_SplineModes_Deactivated

As trajectories, splines are calculated.
The marking result exhibits curves.
The curve runs through its interpolation points
(control points are next to the curve).

As trajectories, splines are calculated.
The marking result exhibits curves.
The curve runs through its interpolation points.

As trajectories, no splines are calculated.
The marking result exhibits no curves.

Mark vectors as programmed: black.
Marking result: red.

The 3 syncAXIS control spline modes. Only with sequences of > 2 mark vectors.

 V1.5.0: Deprecated.

 V1.5.0: Deprecated.

 V1.5.0: Recommended.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
7 Enumerated Types enum

320

innovators for industry

Name of the
enum

slsc_Stage

Description This enum defines the choices for:

• The positioning stage which is to be used

Used by This enum is used with:

• slsc_cfg_select_stage

Syntax enum slsc_Stage
{

slsc_Stage_None = 0,
slsc_Stage1 = 1,
slsc_Stage2 = 2,
slsc_Stage3 = 3,
slsc_Stage4 = 4,

};

Enumeration
constant(s)

slsc_Stage_None No positioning stage.

See syncAXISConfig.xml tag HeadA, HeadB, Stage.
Mandatory notation, if used there:

None

slsc_Stage1 Positioning stage 1.

See syncAXISConfig.xml tag HeadA, HeadB, Stage.
Mandatory notation, if used there:

Stage1

slsc_Stage2 Positioning stage 2.

See syncAXISConfig.xml tag HeadA, HeadB, Stage.
Mandatory notation, if used there:

Stage2

slsc_Stage3 Positioning stage 3.

See syncAXISConfig.xml tag HeadA, HeadB, Stage.
Mandatory notation, if used there:

Stage3

slsc_Stage4 Positioning stage 4.

See syncAXISConfig.xml tag HeadA, HeadB, Stage.
Mandatory notation, if used there:

Stage4

Version info Available as of syncAXIS-DLL V1.2.4.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

321

innovators for industry

8 Appendix A: Using syncAXIS control V1.2.4 and Higher
with XL SCAN Multi-Head Systems

Notes

• The term Multi-Head refers to an XL SCAN system
where
– 1 syncAXIS control instance controls
– more than one excelliSCAN scan head(1)

(in this Appendix “multi” refers to n=4, see
Figure 45, page 322) and

– 1 positioning stage.
This requires a Dongle for syncAXIS control which
has been explicitly configured for the corre-
sponding number of scan heads(2).

8.1 About this Appendix

This Appendix is intended exclusively for system inte-
grators who already know how to implement an
XL SCAN single-head system and know how to use it
together with syncAXIS control.

It applies along with:

• “Installation of SCANLAB XL SCAN Components
and Initial Operation of the
XL SCAN System” Manual

• Main part of this Manual syncAXIS-DLL – Appli-
cation Programming Interface

(1) All scan heads are supposed to mark the same pattern.

(2) That is, a standard Dongle is not sufficient.

Notice!
Carefully read the document “syncAXIS control
Software License Agreement” before installing
and using syncAXIS control. This agreement
defines matters such as terms of usage,
warranty information and liability disclaimers. If
you have questions, simply contact SCANLAB.

Caution!
Read and observe all safety instructions in this
manual!

SCANLAB accepts no liability for damages or
consequential losses resulting from non-obser-
vance of this manual, in particular the safety
instructions contained herein.

Caution!
Read and observe all safety instructions in these
manuals

– “Installation of SCANLAB XL SCAN Compo-
nents and Initial Operation of the
XL SCAN System” Manual

– “syncAXIS-DLL – Application Programming
Interface” Manual

SCANLAB accepts no liability for damages or
consequential losses resulting from non-obser-
vance of this manual, in particular the safety
instructions contained herein.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

322

innovators for industry

45
Example of a 4-head setup (schematic illustration): 1 syncAXIS control instance, 4 excelliSCAN-scan heads, 1 positioning stage.
In the syncAXISConfig.xml, the arrangement of the components must be configured accordingly, see also Figure 47, page 326.

excel
liSCAN

excel
liSCAN

excel
liSCAN

excel
liSCAN

2. SCANHEAD

2. SCANHEAD

*

M
aster/Slave

M
aster/SlaveSLEC

RTC6 #3

RTC6 #2

RTC6 #1

excelliSCAN #4

excelliSCAN #3

excelliSCAN #2

excelliSCAN #1

1 Dongle*

Deviations of the real setup to an ideal system
(for example, due to mounting inaccuracies).
Compensable with syncAXIS control V1.2.4.

Non-standard dongle. Is configured specially to support
n heads (here: n=4).

1 Positioning stage

Note: As of syncAXIS control V1.2.4, the
displacement and rotation of an individual
workpiece can be compensated for at
runtime by slsc_cfg_set_part_displacement
(if the necessary values are supplied, for
example, by a customer’s camera application).

Control signals for laser(s)

(Positioning stage)

Control signals for laser(s)

Control signals for laser(s)

4 excelliSCAN-
scan heads

(via PCIe Bus
to all RTC6s)

1 syncAXIS control (≥V1.2.4) instance

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

323

innovators for industry

The main part of “Installation of SCANLAB XL SCAN
Components and Initial Operation of the
XL SCAN System” Manual refers to an XL SCAN
system with only 1 excelliSCAN scan head (and only
1 RTC6 board) and 1 positioning stage. It applies
analogously to multi-head systems, but with the
following differences:

• 3 additional excelliSCAN scan heads must be
installed and made ready for operation.

• 2 additional RTC6 boards must be installed(1).
Note, the connection for the 2nd scan head of one
of the RTC6 boards is already occupied because it
is used for the connection to the SLEC.

• The RTC6 boards must be connected as
Master/Slave, see RTC6 Manual. This requires
2 Master/Slave connection cables.

• 3 additional SL2-100 data cables must be
provided and the cabling between the additional
excelliSCANs and the additional RTC6 boards
must be carried out with them.

• Note: the “Installation_Project“ from previous
software packages can be used (without changes)
for both single head and multi-head systems.
Only the syncAXISConfig.xml, as it has been used
until now (under syncAXIS control  V1.1), must
be adapted for use with syncAXIS control
 V1.2.4, see Chapter 8.2 ”Usage of
syncAXIS control V1.2.4 and Higher”, page 324.

• For each additional excelliSCAN scan head, an
optimized *.ct5 file must be created(2).
Note, in multi-head systems with
syncAXIS control  V1.2.4, these no longer need
to ensure that the (orthogonal) axes of the
scan head and positioning stage coincide. This
can be achieved via corresponding matrices in the
syncAXISConfig.xml, see Figure 48, page 328 and
Figure 49, page 329.

• syncAXIS control  V1.2.4 must be used. On this
topic, see Chapter 8.2 ”Usage of
syncAXIS control V1.2.4 and Higher”, page 324.

(1) 1 additional SSHC slot cover required.

(2) The correction files supplied by the factory are not
suitable to achieve precision results.

Notice!
With syncAXIS control  V1.2.4 there are
extended possibilities to comfortably configure
systems in which the system components are
arranged differently relative to each other than
shown in Figure 45, page 322. Further infor-
mation can be found in Chapter 8.3 ”About
Transformations in syncAXIS control V1.2.4 and
Higher”, page 332.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

324

innovators for industry

8.2 Usage of
syncAXIS control V1.2.4 and
Higher

8.2.1 Prerequisites for this Appendix

• The excelliSCAN scan heads are installed and
ready for operation

• There is an optimized correction file (*.ct5) for
each of the excelliSCAN scan heads.

8.2.2 Adapting syncAXISConfig.xml
for syncAXIS control V1.2.4
and Higher

In particular observe the safety notices in “Installation
of SCANLAB XL SCAN Components and Initial Oper-
ation of the XL SCAN System” Manual, Chapter 3
”Checking and Adapting the syncAXISConfig.xml”!
That chapter applies analogously. However, to
control the Multi-Head XL SCAN system (see
page 14) it is mandatory to use syncAXIS control
 V1.2.4. This results in several deviations and addi-
tional steps:

• syncAXIS control  V1.2.4 does not use
syncAXISSysConfig.xml anymore.

• With syncAXIS control  V1.2.4, XML
XML configuration files (syncAXISConfig.xml) are
now validated against an XML scheme
 syncAXIS_1_2.xsd(1). This means that every
syncAXISConfig.xml for syncAXIS control  V1.1.n is
no longer usable with syncAXIS control  V1.2.4.
In order to be able to continue using them, the
user must adapt them beforehand. Adapting is a
2 step process (observe the sequence of steps)
which is described in the following:
(1) Technical adaptation

(2) Content adaptation

Step 1 of 2: Adapting syncAXISConfig.xml
Technically

Change the structure of the syncAXISConfig.xml so that
it is valid against the XML schema syncAXIS_1_2.xsd.

For this purpose, SCANLAB provides you with an
executable file *.exe in the software package (this
creates a syncAXISConfig.xml with the valid structure
and takes over existing values).

If you need assistance with the adjustment, contact
SCANLAB.

For further assistance you will also find a configu-
ration example for a 2-head system in the software
package (under configuration >
syncAXISConfig_MultiHead.Template.xml).

Step 2 of 2: Adapting syncAXISConfig.xml in
Regards to Content

More configuration settings are possible and
necessary (because of the extensions of the XML
schema syncAXIS_1_2.xsd to support multi-head
systems). These are content changes and must
therefore be entered manually by users, for example,
the individual multi-head components and their
properties (for example, at which RTC6 scan head
connector is connected which scan device).

Notes

• Upon initializing the syncAXIS control instance
– all RTC6 boards specified in syncAXISConfig.xml,

section <cfg:RTCConfig>, see 2, must be available
– all scan devices specified under <cfg:RTCConfig>

must also be defined under
<cfg:ScanDeviceConfig>

– the positioning stage specified under
<cfg:RTCConfig> must also be defined under
<cfg:StageConfig>

– all scan devices must be available
– the positioning stage must be available
Any additional (not listed under <cfg:RTCConfig>)
entries for devices under <cfg:ScanDeviceConfig>
and <cfg:StageConfig> have no effect.

(1) This also differs considerably from previous versions
because there are many more configuration options.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

325

innovators for industry

(1) Section <cfg:GeneralConfig>, see Figure 46,
page 326:

This section has been restructured for
syncAXIS control  V1.2.4.

Deleted: <cfg:SysConfigFilePath>.

New: <cfg:SimulationConfig>.

Changed: <cfg:LogConfig> renamed (previously
<cfg:LogConfiguration>).

(2) Section <cfg:RTCConfig>, see Figure 47, page 326:
This section has been restructured for
syncAXIS control  V1.2.4.

New: More than 1 RTC6 board can be entered.
For each RTC6 board the name of the scan device
must be specified at scan head output A and B.

Moved: <cfg:CorrectionFilePath …> (now in section
<cfg:ScanDeviceConfig>).

Note: Which of the RTC6 boards is master or slave
does not have to be entered (that is, the ’first’
RTC6 board in syncAXISConfig.xml does not neces-
sarily have to be the master, but can also be one
of the slave boards). The master board is determi-
nated by the physical cabling.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

326

innovators for industry

46
syncAXIS control V1.2.4: syncAXISConfig.xml, example section for general settings <cfg:GeneralConfig>. See page 325.

<cfg:GeneralConfig>
<cfg:ACSController>127.0.0.1</cfg:ACSController>
<cfg:InitialOperationMode>ScannerAndStage</cfg:InitialOperationMode>
<cfg:InitialListHandlingMode>RepeatWhileBufferFull</cfg:InitialListHandlingMode>
<cfg:BaseDirectoryPath>${BASE_PATH}</cfg:BaseDirectoryPath>
<cfg:SimulationConfig>
<cfg:SimulationMode>true</cfg:SimulationMode>
<cfg:SimOutputFileDirectory>[BaseDirectoryPath]/Simulate/</cfg:SimOutputFileDirectory>
<cfg:BinaryOutput>false</cfg:BinaryOutput>
<cfg:DisableFileOutput>false</cfg:DisableFileOutput>

</cfg:SimulationConfig>
<cfg:LogConfig>

<cfg:LogfilePath>[BaseDirectoryPath]/Log</cfg:LogfilePath>
<cfg:Loglevel>Warn</cfg:Loglevel>
<cfg:EnableConsoleLogging>true</cfg:EnableConsoleLogging>
<cfg:EnableFilelogging>false</cfg:EnableFilelogging>
<cfg:MaxLogfileSize>26214400</cfg:MaxLogfileSize>
<cfg:MaxBackupFileCount>0</cfg:MaxBackupFileCount>

</cfg:LogConfig>
</cfg:GeneralConfig>

Optional.

47
syncAXIS control V1.2.4: syncAXISConfig.xml, example section for the RTC6 boards <cfg:RTCConfig>. See page 325.

<cfg:RTCConfig>
<cfg:BoardIdentificationMethod>BySerialNumber</cfg:BoardIdentificationMethod>
<cfg:ProgramFileDirectory>[BaseDirectoryPath]/RTC6/</cfg:ProgramFileDirectory>
<cfg:Boards>
<cfg:RTC6>
<cfg:SerialNumber>123457</cfg:SerialNumber>
<cfg:HeadA>ScanDevice1</cfg:HeadA>
<cfg:HeadB>Stage1</cfg:HeadB>

</cfg:RTC6>
<cfg:RTC6>
<cfg:SerialNumber>123456</cfg:SerialNumber>
<cfg:HeadA>ScanDevice2</cfg:HeadA>
<cfg:HeadB>ScanDevice3</cfg:HeadB>

</cfg:RTC6>
<cfg:RTC6>
<cfg:SerialNumber>123455</cfg:SerialNumber>
<cfg:HeadA>ScanDevice4</cfg:HeadA>
<cfg:HeadB>None</cfg:HeadB>

</cfg:RTC6>
</cfg:Boards>

</cfg:RTCConfig>

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

327

innovators for industry

(3) Section <cfg:ScanDeviceConfig>, see Figure 48,
page 328:
This is a new section in syncAXIS control  V1.2.4
(scan heads are generically referred to here as
“scan devices”).
– Several scan devices can be specified now
– Name, matrix, offset and correction files must

be specified per scan device.
– Furthermore, for workpieces below each of

these scan devices, a matrix and offset can be
specified.

Make sure that the matrices you specify can be
inverted!

(4) Section <cfg:StageConfig>, see Figure 49,
page 329:

This section has been renamed for syncAXIS control
 V1.2.4 (previously: <cfg:StageDynamics>).
Make sure that the matrices you specify can be
inverted!

(5) Section <cfg:LaserConfig>

Users do not need to make any changes here for
syncAXIS control  V1.2.4.

Note: the laser signals are outputted identically on
both RTC6 boards.

(6) Section <cfg:TrajectoryConfig>

The sub-section <cfg:HeuristicConfig> has to be
deleted from this section <cfg:TrajectoryConfig> and to
be added to section <cfg:MotionDecompositionConfig>,
see 7.

(7) Section <cfg:MotionDecompositionConfig>, see
Figure 50, page 330.
This section is new for syncAXIS control  V1.2.4
and must be correspondingly configured by
users.
Notes: the sub-section <cfg:HeuristicConfig>
derives from the section <cfg:TrajectoryConfig>,
see 6. The tag <cfg:FilterBandwidth> corresponds
to the tag <cfg:Bandwidth> in syncAXISSysConfig.xml
for syncAXIS control  V1.1.

(8) Section <cfg:IOConfig>

Users do not need to make any changes here for
syncAXIS control  V1.2.4.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

328

innovators for industry

48
syncAXIS control  V1.2.4: syncAXISConfig.xml, example section for the scan heads <cfg:ScanDeviceConfig>. See page 327.

<cfg:ScanDeviceConfig>
<cfg:FieldLimits>
<cfg:XAxis Unit=“mm“ Max=“150“ Min=“-150“ />
<cfg:YAxis Unit=“mm“ Max=“150“ Min=“-150“ />

</cfg:FieldLimits>
<cfg:DynamicLimits>
<cfg:Velocity Unit=“rad/s“>90</cfg:Velocity>
<cfg:Acceleration Unit=“rad/s^2“>1.1314e5</cfg:Acceleration>
<cfg:Jerk Unit=“rad/s^3“>4e9</cfg:Jerk>

</cfg:DynamicLimits>
<cfg:DefaultCorrectionFile>0</cfg:DefaultCorrectionFile>
<cfg:MaxGalvoAngle Unit=“rad“>10.3</cfg:MaxGalvoAngle>
<cfg:FocalLength Unit=“mm“>160</cfg:FocalLength>
<cfg:Delay Unit=“s“>0.00125</cfg:Delay>
<cfg:ScanDeviceList>
<cfg:ScanDevice Name=“ScanDevice1“>
<cfg:Alignment>
<cfg:Matrix>
<cfg:T11>1</cfg:T11>
<cfg:T12>0</cfg:T12>
<cfg:T21>0</cfg:T21>
<cfg:T22>1</cfg:T22>

</cfg:Matrix>
<cfg:Offset X=“0“ Y=“0“ />

</cfg:Alignment>
<cfg:BasePartDisplacement>
<cfg:Matrix>
<cfg:T11>1</cfg:T11>
<cfg:T12>0</cfg:T12>
<cfg:T21>0</cfg:T21>
<cfg:T22>1</cfg:T22>

</cfg:Matrix>
<cfg:Offset X=“0“ Y=“0“ />

</cfg:BasePartDisplacement>
<cfg:CorrectionFileList>
<cfg:CorrectionFilePath CalibrationFactor=“-1“>D2_584_imprvd_4_SD1_1.ct5</cfg:CorrectionFilePath>
<cfg:CorrectionFilePath CalibrationFactor=“-1“>D2_584_factory.ct5</cfg:CorrectionFilePath>

</cfg:CorrectionFileList>
</cfg:ScanDevice>
<cfg:ScanDevice Name=“ScanDevice2“>

...etc. ...

</cfg:ScanDeviceList>
</cfg:ScanDeviceConfig>

Coefficients m11…m22 of a (2 × 2) transformation matrix for

Name of the 1st scan head

Offset for the 1st scan head

Coefficients m11…m22 of a (2 × 2) transformation matrix for

Offset for these workpieces

workpieces supposed to be processed by 1st scan head

Correction files (up to 4 tags)

the 1st scan head

Optional. Usually does not need to be changed.

Optional. Usually does not need to be changed.

Optional. Usually does not need to be changed.

Note: on runtime an additional
transformation is possible by
slsc_cfg_set_part_displacement.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

329

innovators for industry

49
syncAXIS control  V1.2.4: syncAXISConfig.xml, example section for the positioning stages <cfg:StageConfig>. See page 327.

<cfg:StageConfig>
<cfg:Delay Unit=“s“>0.0014951</cfg:Delay>
<cfg:FieldLimits>
<cfg:XDirection Unit=“mm“ Max=“150“ Min=“-150“ />
<cfg:YDirection Unit=“mm“ Max=“150“ Min=“-150“ />

</cfg:FieldLimits>
<cfg:DynamicLimits>
<cfg:Velocity Unit=“mm/s“>1000</cfg:Velocity>
<cfg:Acceleration Unit=“mm/s^2“>10000</cfg:Acceleration>
<cfg:Jerk Unit=“mm/s^3“>100000</cfg:Jerk>

</cfg:DynamicLimits>
<cfg:CalculationDynamics>
<cfg:Velocity Unit=“mm/s“>500</cfg:Velocity>
<cfg:Acceleration Unit=“mm/s^2“>5000</cfg:Acceleration>
<cfg:Jerk Unit=“mm/s^3“>50000</cfg:Jerk>

</cfg:CalculationDynamics>
<cfg:StageList>
<cfg:Stage Name=“Stage1“>
<cfg:FieldLimits>
<cfg:XDirection Unit=“mm“ Max=“150“ Min=“-150“ />
<cfg:YDirection Unit=“mm“ Max=“150“ Min=“-150“ />

</cfg:FieldLimits>
<cfg:DynamicLimits>
<cfg:Velocity Unit=“mm/s“>1000</cfg:Velocity>
<cfg:Acceleration Unit=“mm/s^2“>10000</cfg:Acceleration>
<cfg:Jerk Unit=“mm/s^3“>100000</cfg:Jerk>

</cfg:DynamicLimits>
<cfg:CalculationDynamics>
<cfg:Velocity Unit=“mm/s“>500</cfg:Velocity>
<cfg:Acceleration Unit=“mm/s^2“>5000</cfg:Acceleration>
<cfg:Jerk Unit=“mm/s^3“>50000</cfg:Jerk>

</cfg:CalculationDynamics>
<cfg:StageAxisX>0</cfg:StageAxisX>
<cfg:StageAxisY>1</cfg:StageAxisY>
<cfg:SlecEtherCATNodeID>0</cfg:SlecEtherCATNodeID>
<cfg:Alignment>
<cfg:Matrix>
<cfg:T11>1</cfg:T11>
<cfg:T12>0</cfg:T12>
<cfg:T21>0</cfg:T21>
<cfg:T22>1</cfg:T22>

</cfg:Matrix>
<cfg:Offset X=“0“ Y=“0“ />

</cfg:Alignment>
</cfg:Stage>

...etc. ...

</cfg:StageList>
</cfg:StageConfig>

Coefficients m11…m22 of a (2 × 2) transformation matrix for

Name of the positioning stage

Offset for the positioning stage

the positioning stage

Mandatory. Values are taken over from the original xml.

Optional. Overwrites the global stage configuration
(that is, values from above).

Optional. Overwrites the global stage configuration
(that is, values from above).

Optional. Overwrites the global stage configuration
(that is, values from above).

Optional. For stage setups where ACS x axis index  0.
Optional. For stage setups where ACS y axis index  1.

Optional. For stage setups where SLEC-ID  0.

Mandatory. Values are taken over from the original xml.

Mandatory. These values must be calculated and entered
manually: CalculationDynamics (new)
=ReducedStageDynamicFactor (syncAXISSysConfig.xml)

× DynamicLimits (syncAXISConfig.xml).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

330

innovators for industry

50
syncAXIS control  V1.2.4: syncAXISConfig.xml, example section for filter bandwidth and Heuristic <cfg:MotionDecompositionConfig>.
See page 327.

<cfg:MotionDecompositionConfig>
<cfg:FilterBandwidth>2</cfg:FilterBandwidth>
<cfg:HeuristicConfig>

<cfg:DynamicReductionFunction Units=“mm and mm/s“>
<cfg:DataPoint Length=“0.0“ Velocity=“2000“ />
<cfg:DataPoint Length=“27.0“ Velocity=“2000“ />
<cfg:DataPoint Length=“27.01“ Velocity=“700“ />
<cfg:DataPoint Length=“54.0“ Velocity=“700“ />

</cfg:DynamicReductionFunction>
</cfg:HeuristicConfig>

</cfg:MotionDecompositionConfig>

Mandatory. Value is taken over from syncAXISSysConfig.xml.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

331

innovators for industry

8.2.3 Further Notes on the Use of
syncAXIS control V1.2.4 and
Higher

• “Jobs” that have been designed for
syncAXIS control  V1.2.4 are compatible to
syncAXIS control  V1.2.4 and do not need to be
changed.

• syncAXIS control V1.2.4 allows developing
software for Multi-Head systems. The
syncAXIS-DLL provides the assignment of
motions to scan heads and positioning stage.
Code for multi-head systems is to be written in
the same way as code for single-head systems
(that is, software developers do not have to
consider fundamental differences).

• syncAXIS control V1.2.4 offers extended possibil-
ities to align scan head and positioning stage
each other (even after the optimized
correction file *.ct5 has been created). Among
other things, there is the possibility (for example,
to be able to compensate hardware setup errors)
to compensate relative rotations to each other.
Even axis inversions can be carried out. For this, in
the syncAXISConfig.xml, there are in
– Section <cfg:ScanDeviceConfig>, see Figure 48,

page 328, the Alignment tags Matrix and Off-
set (for the individual scan devices)(1). Make
sure this matrix is invertible!

– Section <cfg:StageConfig>, see Figure 49,
page 329, the Alignment tags Matrix and Off-
set (for the individual positioning stages)(2).
Make sure this matrix is invertible!

• With syncAXIS control V1.2.4, it is also possible to
adjust – independently for each scan device – the
set trajectory of each individual workpiece.
(in syncAXISConfig.xml under <cfg:Configuration> 

<cfg:ScanDeviceConfig>  <cfg:ScanDeviceList> 

<cfg:ScanDevice …>  <cfg:BasePartDisplacement>,
see Figure 48, page 328).
This results in a basic coordinate system for the
individual scan devices (for example, to
compensate for the different positions of
different clamping systems).
See also Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332).

• By slsc_cfg_set_part_displacement, it is
possible to change the set trajectory individually
for each individual workpiece (individually for
each scan device) via API during the runtime of
the user program.
(must occur before the start of the Job calcu-
lation, that is, before slsc_list_begin* is called.
This transformation is in addition to the
coordinate transformation entered in
<cfg:BasePartDisplacement>.
For this purpose, only the desired matrix and
offset values (for example, captured by image
recognition) need to be passed to this function.
See also Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332.

(1) Exported as RTC6 commands set_matrix.

(2) The control values for the positioning stage are
calculated within syncAXIS-DLL.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

332

innovators for industry

8.3 About Transformations in
syncAXIS control V1.2.4 and
Higher

In syncAXIS control  V1.2.4, there are several ways
to change the marking pattern and to influence the
control.

Depending on the application (example: a camera
image evaluation determines the actual workpiece
position) and the system setup present, certain trans-
formations may be necessary.

In syncAXIS control, there are the following transfor-
mation types, see also Figure 51, page 333 and
Figure 52, page 334:

• Transformation to change target point coordi-
nates of the incoming pattern (even as of V1.0):
– See Figure 52, page 334, (1)
– Via API by slsc_cfg_set_matrix_and_offset
– Via API by slsc_list_set_matrix_and_offset
– Via API by slsc_cfg_set_rot_and_offset_2d
– Via API by slsc_list_set_rot_and_offset_2d
The effects are visible in the simulation result.

• Transformation to change the set trajectory of a
marking pattern for individual scan devices (as of
V1.2.4)
– See Figure 51, page 333, (2).
– See Figure 52, page 334, (2).
– In syncAXISConfig.xml, tag

<cfg:BasePartDisplacement>, see also page 331
– Via API by slsc_cfg_set_part_displacement
The effects are visible in the simulation result.

• Transformation to change the control values for
the positioning stage (as of V1.2.4)
– See Figure 51, page 333, (3).
– See Figure 52, page 334, (3).
– In syncAXISConfig.xml, tag for

Stage1 -> <Alignment>
With this, it is possible:

– to invert the axes
– to align the positioning stages with each other

(in multi-positioning stage-systems)
The effects are not visible in the simulation result.

• Transformation to change the control values for
the scan device (as of V1.2.4)
– See Figure 51, page 333, (4).
– See Figure 52, page 334, (4).
– In syncAXISConfig.xml, Tag for

ScanDevice1 -> <Alignment>
With this, it is possible:

– to align the scan device coordinate system with
that of the positioning stage (to compensate
for mounting errors)

– to invert the axes
The effects are not visible in the simulation result.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

333

innovators for industry

51
syncAXIS control  V1.2.4: matrix and offset for positioning stage, excelliSCAN-scan heads and work pieces in syncAXISConfig.xml.
See text for further information.

4

3

2
excel

liSCAN

excel
liSCAN

<cfg:StageList>
<cfg:Stage Name="Stage1">
 <cfg:FieldLimits>...</cfg:FieldLimits>
...
 <cfg:Alignment>
 <cfg:Matrix>
 <cfg:T11>1</cfg:T11>
 <cfg:T12>0</cfg:T12>
 <cfg:T21>0</cfg:T21>
 <cfg:T22>1</cfg:T22>
 </cfg:Matrix>
 <cfg:Offset X="0" Y="0" />
 </cfg:Alignment>
</cfg:Stage>
...
<cfg:Stages>

In syncAXISConfig.xml:
<cfg:ScanDeviceList>
<cfg:ScanDevice Name="ScanDevice2">
 <cfg:Alignment>
 <cfg:Matrix>
 <cfg:T11>1</cfg:T11>
 <cfg:T12>0</cfg:T12>
 <cfg:T21>0</cfg:T21>
 <cfg:T22>1</cfg:T22>
 </cfg:Matrix>
 <cfg:Offset X="0" Y="0" />
 </cfg:Alignment>
 <cfg:BasePartDisplacement>
 <cfg:Matrix>
 <cfg:T11>1</cfg:T11>
 <cfg:T12>0</cfg:T12>
 <cfg:T21>0</cfg:T21>
 <cfg:T22>1</cfg:T22>
 </cfg:Matrix>
 <cfg:Offset X="0" Y="0" />
 </cfg:BasePartDisplacement>
...
</cfg:ScanDevice>
...
</cfg:ScanDeviceList>

Coordinate system

“Workpiece 2”

Coordinate system

“Workpiece 1”

Coordinate system

“Stage 1”

Coordinate system
“ScanDevice2”

Coordinate system
“ScanDevice1”

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems

334

innovators for industry

52
syncAXIS control  V1.2.4: transformations.

Pn’

Pn

4

3

32

2

1

RTC6

syncAXIS.dll

Motion decomposition acc.
FilterBandwidth value in XML

Planning the trajectories
(incl. Blendings etc)

Marking pattern
(with target points P)

Transforming the target point coordinates
via API (not via XML):

slsc_cfg/list_set_matrix_and_offset
slsc_cfg/list_set_rot_and_offset_2d

syncAXISconfig.xml
Stage-><Alignmemt>

syncAXISconfig.xml
ScanDevice2-><Alignmemt>

syncAXISconfig.xml
ScanDevice1-><Alignmemt>

Control values
for the scan device 1

f. present system

Control values
for the scan device 2

f. present system

Control values
for the scan device 1

(“ideal system“)

Control values
for the scan device 2

(“ideal system“)

Control values
for the pos. stage
f. present system

Control values
for the pos. stage
(“ideal system“)

Set trajectory
for marking pattern

f. scan device 1

Set trajectory
for Marking pattern

f. scan device 2

Info box „Part displacement“

γ ‘(t) = MatrixXML × MatrixAPI × γ (t) + OffsetXML + OffsetAPI ;

where MatrixXML and OffsetXML originates from the tag <BasePartDisplacement>
in syncAXISConfig.xml and MatrixAPI and OffsetAPI from slsc_cfg_set_part_displacement.
Example: if there is no tag <BasePartDisplacement>, then γ ‘(t) = MatrixAPI × γ (t) + OffsetAPI.

Matrix × γ + Offset

γ ‘(t)

„Part displacement“
(see info box)

γ (t)

γ ‘(t)

„Part displacement“
(see info box)

γ (t)

Marking pattern
for scan device 1

(microvectors)

Marking pattern
for scan device 2

(microvectors)

Set trajectory
for the pos. stage

Set trajectory for
marking pattern

Marking pattern
(with modified
target points

P‘ = M × P + O)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
9 Appendix B: Application Note – Handling Lists with syncAXIS control

335

innovators for industry

9 Appendix B: Application Note – Handling Lists with
syncAXIS control

In XL SCAN setups, RTC6 boards are used to control
scan devices and laser. RTC6 boards buffer infor-
mation (for example, positions) in their list
memories(1). Later they are processed in real time
(= every 10 µs). The RTC6 list memory can hold up to
8 Million RTC6 list commands.

When programming with the RTC6DLL.dll only (that is,
without syncAXIS control software), users them-
selves need to take care of the list handling. For this
two approaches are common:

• to monitor input pointer and execution pointer

• to make use of the “2-list concept” (which is to fill
one List while the other one is executing; in
constant alternation).

With many RTC6 user programs, it is even possible to
completely skip list handling: with the much longer
RTC6 vector commands, RTC6 list memory is suffi-
cient for far more than 40 s of execution time.

syncAXIS-DLL utilizes an own set of functions for the
synchronous control of scan devices, positioning
stage and laser. These syncAXIS control functions are
similar to the RTC6 micro vector commands (see
RTC6 Manual), but blocks 2 RTC6 list memory posi-
tions for 10 µs of execution.

If the RTC6 list memory (with its capacity for 8 million
RTC6 list commands) is used once and completely
without reloading, a maximum marking execution
time of 40 s can be achieved, see also Figure 11,
page 41.

Notice!
The code sections in this Appendix only show
the minimum set of functions necessary for an
syncAXIS control-based user program that
would be actually executable. These code
sections only serve to illustrate certain concepts
for the implementation of syncAXIS control-
based user programs. In each example, the Job
execution starts either once the buffer is full or
once the execution state is
“slsc_ExecState_ReadyForExecution“. In contrast,
with actual syncAXIS control-based
user programs, the start of a Job execution must
depend on multiple conditions and security
regulations. Make sure to comply to all relevant
safety regulations and program your code
accordingly. The code sections in this document
do not take error handling into account. Make
sure to always monitor the return value of each
syncAXIS control function provides and react
accordingly. Also note that you would have to
change certain parameters in the code sections
in order to fit the requirements of the actual
XL SCAN system and Job.

(1) “List buffer”.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
9 Appendix B: Application Note – Handling Lists with syncAXIS control

336

innovators for industry

Most users also want to mark Jobs that last longer
than 40 s. Therefore, syncAXIS control is able to
continuously loading lists (“automatic list
reloading”). Windows PCs are not able to work in real
time. Nevertheless, to avoid buffer underruns, Job
calculation and Job transfer of the
syncAXIS control instance is performed in a way that
functional blocks are loaded and planning is faster
than actual Job execution.

Therefore, it is only possible to start the Job execution
after the processing of the first functional block has
been completed. As syncAXIS control can calculate
several Jobs subsequently while simultaneously
transfer Jobs to the RTC6 board, the “automatic list
reloading” addresses the use of several small Jobs as
well as single larger Jobs.

This appendix shows examples of implementations in
C++ for:

• small Jobs, without using a list handling mode,
see Figure 53, page 336

• bigger Jobs, using the 3 different list handling
modes
– ”List Handling Mode

“ReturnAtOnce””, page 337
– ”List Handling Mode

“RepeatWhileBufferFull””, page 339
– ”List Handling Mode

“RepeatWhilePredicate””, page 343

53
Simplified code structure to execute small Jobs (that do not exceed the RTC6 list memory).

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

size_t SLHandle;
slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml“);

size_t JobID;
slsc_list_begin(SLHandle, &JobID);
// Insert slsc_list_-functions here.
slsc_list_end(SLHandle);

if (!startSingleJob(SLHandle))
{

// !Insert proper error handling here!
}

slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
9 Appendix B: Application Note – Handling Lists with syncAXIS control

337

innovators for industry

9.1 List Handling Mode “ReturnAtOnce”

“ReturnAtOnce“ is the list handling mode most similar
to RTC6 programming with the RTC6DLL.dll (that is,
without syncAXIS-DLL). The syncAXIS-DLL-internal
buffer is limited to the size of the RTC6 list memory
and cannot be exceeded.

As soon as the 4.000.001st RTC6 micro vector
command is to be written to the RTC6 list memory,
the respective syncAXIS control function returns a
return value  0. This indicates that the RTC6 list
memory is full. Then it is up to the user to first free
up space in the RTC6 list memory before he/she can
load more Job functions. This can be achieved by
starting a Job execution (or deleting the
syncAXIS control instance).

With list handling mode “ReturnAtOnce“ it is not
possible to overwrite not yet executed RTC6 list
commands in the RTC6 list memory.

This is the major difference to the RTC6 programming
with the RTC6DLL.dll where the writing just continues
at the list memory begin, once the input pointer
exceeds the list memory (which would overwrite not
yet executed RTC6 list commands).

The main advantage compared to list handling mode
“RepeatWhileBufferFull” and “RepeatWhilePredicate“ is
that the program flow gets does not stuck at the
syncAXIS control function that is overloading the
RTC6 list memory. This allows users to handle situa-
tions with full RTC6 list memory at will.

A possible approach of using the list handling mode
“ReturnAtOnce“, see Figure 54, page 338, is to load the
Job until a syncAXIS control function returns the
respective error bit. Then, the Job execution is started
to free some RTC6 list memory. Then, the remaining
Job (including the syncAXIS control Job function that
returned the return value  0) is loaded piecewise as
long as no buffer overruns are indicated. If so, the
user can just wait for some list memory to be freed
and continue loading.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
9 Appendix B: Application Note – Handling Lists with syncAXIS control

338

innovators for industry

54
Simplified code structure to execute bigger Jobs (that do exceed the RTC6 list memory) and list handling mode
slsc_ListHandlingMode_ReturnAtOnce.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

size_t SLHandle;
slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml“);
slsc_cfg_set_list_handling_mode(SLHandle, slsc_ListHandlingMode::slsc_ListHandlingMode_ReturnAtOnce, nullptr);
size_t JobID;

slsc_list_begin(SLHandle, &JobID);

// Customize timeout. If the Buffer is not freed after a certain timeout,
// probably no Job is running and you should start execution.
size_t Retry_TimeOut = 5;
size_t BufferDelay = 10;

// For each slsc_list_* function call (for example, by creating wrapper functions).
{

std::array<double, 2> Target{X, Y};
size_t Retry_Index = 0;
while ((slsc_list_jump_abs(SLHandle, Target.data()) == 0x0010) && (Retry_TimeOut > Retry_Index))
{

std::this_thread::sleep_for(std::chrono::milliseconds(BufferDelay));
Retry_Index++;

}
if (Retry_TimeOut > Retry_Index)
{

// The final buffer is full now. Execution should be started.
slsc_ctrl_start_execution(SLHandle);

}
}

slsc_list_end(SLHandle);

if (!startSingleJob(SLHandle))
{

// !Insert proper error handling here!
}

slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
9 Appendix B: Application Note – Handling Lists with syncAXIS control

339

innovators for industry

9.2 List Handling Mode “RepeatWhileBufferFull”

SCANLAB recommends users new to
syncAXIS control to use list handling mode
”RepeatWhileBufferFull” (for this reason it is used in the
“Installation_Project”). It is the most convenient way
to handle large Jobs with syncAXIS control.

In list handling mode “RepeatWhileBufferFull”,
syncAXIS-DLL reads the Job functions being called
and buffers their transfer. If the RTC6 list memory
should be full at any time, then syncAXIS-DLL waits
at the respective Job function until there is free space
again (for example, after the Job execution has been
started).

Note that with list handling mode
”RepeatWhileBufferFull” the syncAXIS control instance
does not change to an error state, once the buffer is
full. Instead, it waits silently for it to be freed by the
user.

To achieve continuous Job reloading, 2 parallel
threads are the simplest way

(1) one for filling the RTC6 list memory

(2) one for Job execution start

slsc_ctrl_get_exec_state is used to determine
whether the Job is ready to get started.

The following is an example of how to use the list
handling mode ”RepeatWhileBufferFull” with parallel
threads:

• Asynchronous thread 1: for filling the RTC6 list
memory,
see Figure 55, page 340

• Asynchronous thread 2: to start the Job
execution,
see Figure 56, page 341

• Automatic Job Start (as Soon as Ready for
Execution) by Utilizing Callbacks,
see Figure 57, page 342

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
9 Appendix B: Application Note – Handling Lists with syncAXIS control

340

innovators for industry

55
Simplified code structure to execute bigger Jobs (that do exceed the RTC6 list memory) and list handling mode
RepeatWhileBufferFull. Asynchronous Thread 1: For filling the RTC6 list memory.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

size_t SLHandle;
slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml“);

slsc_cfg_set_list_handling_mode(SLHandle, slsc_ListHandlingMode::slsc_ListHandlingMode_RepeatWhileBufferFull,
nullptr);

auto ListFilling = std::async(std::launch::async, [SLHandle]()
{

size_t JobID;
slsc_list_begin(SLHandle, &JobID);
// Insert slsc_list_-functions here.
slsc_list_end(SLHandle);
return 0;

});

if (!startSingleJob(SLHandle))
{

// !Insert proper error handling here!
}
slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
9 Appendix B: Application Note – Handling Lists with syncAXIS control

341

innovators for industry

56
Simplified code structure to execute bigger Jobs (that do exceed the RTC6 list memory) and list handling mode
RepeatWhileBufferFull. Asynchronous Thread 2: to start the Job execution.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

size_t SLHandle;
slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml“);

slsc_cfg_set_list_handling_mode(SLHandle, slsc_ListHandlingMode::slsc_ListHandlingMode_RepeatWhileBufferFull,
nullptr);

slsc_ExecState State = slsc_ExecState_Idle;
auto ListFilling = std::async(std::launch::async, [&]()
{

while (State != slsc_ExecState_ReadyForExecution)
{
slsc_ctrl_get_exec_state(SLHandle, &State);
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
slsc_ctrl_start_execution(SLHandle);
return 0;

});

size_t JobID;
slsc_list_begin(SLHandle, &JobID);

// Insert slsc_list_-functions here.

slsc_list_end(SLHandle);
ListFilling.wait();
while (State != slsc_ExecState_Idle)
{

slsc_ctrl_get_exec_state(SLHandle, &State);
std::this_thread::sleep_for(std::chrono::milliseconds(1));

}

slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
9 Appendix B: Application Note – Handling Lists with syncAXIS control

342

innovators for industry

57
Simplified code structure to execute bigger Jobs (that do exceed the RTC6 list memory) and list handling mode
RepeatWhileBufferFull. Automatic Job start (as Soon as Ready for Execution) utilizing Callback functions.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

struct Contents
{

size_t SLHandle;
uint32_t* Context;

}

size_t SLHandle;
slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml“);

slsc_cfg_set_list_handling_mode(SLHandle, slsc_ListHandlingMode::slsc_ListHandlingMode_RepeatWhileBufferFull,
nullptr);

Contents Content = {SLHandle, &Context };

slsc_JobCallback AutoStart = [](size_t JobID, void* Context)
{

slsc_ExecState State = slsc_ExecState_Idle;

Contents*Content = static_cast<Contents*>(Context);
size_t SLHandle = Content->SLHandle;

while (State != slsc_ExecState_ReadyForExecution)
{

std::this_thread::sleep_for(std::chrono::milliseconds(1));
slsc_ctrl_get_exec_state(SLHandle, &State);

}
std::cout << “Start Execution“ << std::endl;
slsc_ctrl_start_execution(SLHandle);

return;
};

slsc_ExecTimeCallback PrintExecutionFinished = [](size_t JobID, uint64_t Progress, double ExecTime, void* Context)
{
std::cout << “Execution finished after “ << ExecTime << “ sec!“ << std::endl;
return;
};
slsc_cfg_register_callback_job_loaded_enough(SLHandle, AutoStart, &Content);
slsc_cfg_register_callback_job_finished_executing(SLHandle, PrintExecutionFinished, &Content);

size_t JobID;
slsc_list_begin(SLHandle, &JobID);
// Insert slsc_list_-functions here.
slsc_list_end(SLHandle);

// Wait for Job end.
slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
9 Appendix B: Application Note – Handling Lists with syncAXIS control

343

innovators for industry

9.3 List Handling Mode “RepeatWhilePredicate”

In list handling mode “RepeatWhilePredicate“, users
have more freedom, but also more responsibility
loading the RTC6 list memory. For this mode, a user
can program his own predicate that defines the
behavior with full RTC6 list memory.

In the following example, see Figure 58, page 343,
the predicate is programmed in a way to mimic the
list handling mode ”RepeatWhileBufferFull“. Using this
implementation, a user can for example, also modify
the waiting time between each reloading.

58
Simplified code structure to execute bigger Jobs (that do exceed the RTC6 list memory) and list handling mode
“RepeatWhilePredicate“.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

size_t SLHandle;
slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml“);

slsc_cfg_set_list_handling_mode(SLHandle, slsc_ListHandlingMode::slsc_ListHandlingMode_RepeatWhilePredicate,
[](uint32_t RetVal)
{

bool Flag = (0x0010 & RetVal == 0x0010);
size_t BufferDelay = 10;
if (Flag)
{

// Customize sleep time between each reloading
std::this_thread::sleep_for(std::chrono::milliseconds(BufferDelay));

}
return Flag;

});

auto ListFilling = std::async(std::launch::async, [SLHandle]()
{

size_t JobID;
slsc_list_begin(SLHandle, &JobID);
// Insert slsc_list_-functions here.
slsc_list_end(SLHandle);
return 0;

});

if (!startSingleJob(SLHandle))
{

// !Insert proper error handling here!
}
slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
10 Appendix C: Application Note – Marking Texts by Using Modules

344

innovators for industry

10 Appendix C: Application Note – Marking Texts by Using
Modules

An example for the application of Modules is the
marking of texts. With the method introduced here,
there is no risk of Buffer underrun, although finely
defined vector paths are created.

In advance, you must determine which individual
characters in which font and size you will need.

You record each of these characters as a separate
Module file. The content of each Module thus corre-
sponds to a glyph(1) (whose geometry is fixed and
cannot be changed).

Since several fonts and sizes are usually to be used, it
makes sense to include this information in the file
name, for example,

In the future, you can call up the Modules you have
created as you wish in order to (to first simulate, see
Figure 61, page 346 and then) to mark character
strings you want. The code example Figure 60,
page 345 uses the sequence “XLSCAN”.

(1) The concrete graphical representation of a character.

59
Simulation result of the Code in Figure 61, page 346
(visualized by syncAXIS Viewer V1.3).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
10 Appendix C: Application Note – Marking Texts by Using Modules

345

innovators for industry

60
Simplified code structure for recording several Modules. Here, the content of each Module is a single glyph
(X, L, S, C, A, N).

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

// As in Figure 28, page 68, a syncAXIS control instance is initialized to record Modules.
// The content of each Module is a glyph, that is, only a single letter/digit from a specific font
// and in a certain font size only.
// The procedure must be repeated for each glyph in each font and size that is supposed to be
// available later. In the future, you can mark any character string using these Modules.

size_t JobID = 0;
size_t SLHandle = 0;

std::vector<std::string> Letters = { “X“, “L“, “S“, “C“, “A“, “N“ };
std::array<double, 2> StartPosition{ 0, 0 };

slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml“);

for (std::string Letter : Letters)
{

std::string Path = (“ModuleAlphabet\\“ + Letter + “.slm“);
ModuleRecordingFinished = false;

slsc_list_begin_module(SLHandle, &JobID, StartPosition.data(), Path.data());

// Write vectors for the respective glyph here.

slsc_list_end(SLHandle);

// Wait for each Module recording to finalize.
if (!startSingleJob(SLHandle))

{
// !Insert proper error handling here!

}
}

slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
10 Appendix C: Application Note – Marking Texts by Using Modules

346

innovators for industry

61
Simplified code structure for replaying several Modules in sequence to create the text “XLSCAN”.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

// As in Figure 29, page 69, an syncAXIS control instance is initialized to play back Modules.
// In this example, the Modules containing the glyphs are used to mark the text “XLSCAN”.
// An offset (fixed spacing) is inserted between each letter.

size_t SLHandle = 0;
size_t JobID = 0;

std::vector<std::string> Letters = { “X“, “L“, “S“, “C“, “A“, “N“ };
std::array<double, 2> Position{ 0, 0 };
double Spacing = 3.;

slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml“);

slsc_list_begin(SLHandle, &JobID);

for (std::string Letter : Letters)
{

std::string Path = (“ModuleAlphabet\\“ + Letter + “.slm“);

slsc_list_set_rot_and_offset_2d(SLHandle, 0, Position.data());
Position[0] += Spacing;

slsc_list_playback_module(SLHandle, Path.data());
}

slsc_list_end(SLHandle);

if (!startSingleJob(SLHandle))
{

// !Insert proper error handling here!
}

slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
11 Appendix D: Application Note – Avoiding Buffer Underruns by Using Modules

347

innovators for industry

11 Appendix D: Application Note – Avoiding Buffer
Underruns by Using Modules

On the following pages you will find commented
code sections showing how to use Modules to avoid
a Buffer underrun:

• Part 1 of 4 Detecting a successful Job execution
in Figure 62, page 347

• Part 2 of 4 Detecting a Buffer underrun
in Figure 63, page 348

• Part 3 of 4 Recording a Module
in Figure 64, page 349

• Part 4 of 4 Replaying a Module
in Figure 65, page 349

62
Simplified code structure, part 1 of 4 – Detecting a successful Job execution.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

//
// To trigger execution of a single Job as soon as it is allowed.
// Then detect whether the execution has been successful or not.
//
bool startSingleJob(size_t SLHandle)
{

slsc_ExecState State = slsc_ExecState_Idle;
while (State != slsc_ExecState_ReadyForExecution)
{

uint32_t RetVal = slsc_ctrl_get_exec_state(SLHandle, &State);
if (RetVal != 0 || State == slsc_ExecState_NotInitOrError)
{

return false;
}

}
uint32_t RetVal = slsc_ctrl_start_execution(SLHandle);
if (RetVal != 0)
{

return false;
}
while (State != slsc_ExecState_Idle)
{

uint32_t RetVal = slsc_ctrl_get_exec_state(SLHandle, &State);
if (RetVal != 0 || State == slsc_ExecState_NotInitOrError)
{

return false;
}

}
return true;

}

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
11 Appendix D: Application Note – Avoiding Buffer Underruns by Using Modules

348

innovators for industry

63
Simplified code structure, part 2 of 4 – Detecting a Buffer underrun.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

//
// The following lines demonstrate the detection of a Buffer underrun.
// With short vectors at high speeds, a Buffer underrun may occur
// which interrupts the processing and thus makes the workpiece unusable.
// To avoid this, one possible approach is to test all Jobs with the laser
// turned off (for example, slsc_ctrl_disable_laser) prior to the actual execution.
//
size_t SLHandle = 0;
slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml”);

auto ListFilling = std::async(std::launch::async, [&SLHandle]()
{

size_t JobID = 0;

slsc_list_begin(SLHandle, &JobID);
// Insert the respective vector functions here.
slsc_list_end(SLHandle);

return JobID;
});

bool SucessfulExecution = startSingleJob(SLHandle);
ListFilling.wait();
bool BufferUnderrunOccurred = false;
// If an error, e.g. buffer underrun did occur, the processing may be incomplete.
if (!SucessfulExecution)
{

size_t ErrorCount = 0;
slsc_ctrl_get_error_count(SLHandle, &ErrorCount);

for (int i = 0; i < ErrorCount; i++)
{

uint64_t ErrorCode = 0;
constexpr static size_t ErrorTextSize = 1000;
std::array<char, ErrorTextSize> ErrorText;
slsc_ctrl_get_error(SLHandle, i, &ErrorCode, ErrorText.data(), ErrorText.size());
BufferUnderrunOccurred |= (ErrorCode == 0x0000000300000001);

}
}

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
11 Appendix D: Application Note – Avoiding Buffer Underruns by Using Modules

349

innovators for industry

64
Simplified code structure, part 3 of 4 – Recording a Module.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

//
// If a Job is likly to create a Buffer underrun, it is recommended to use Modules to avoid this.
// By slsc_cfg_initialize_copy ( V1.3.0), it is possible to create a syncAXIS control instance
// in simulation mode with the same configuration as an already active one.
// In this example, a syncAXIS control instance is still active with the Handle SLHandle.
//
size_t SLHandle = 1; // from previous run
size_t JobID = 0;
size_t ModuleHandle = 0;
slsc_cfg_initialize_copy(&ModuleHandle, SLHandle);

std::array<double, 2> Position{ 0, 0 };

// Record initial Job
slsc_list_begin_module(ModuleHandle, &JobID, Position.data(), “Module.slm“);
// Insert the respective vector functions here.
slsc_list_end(ModuleHandle);

bool ModuleWritingSuccessful = startSingleJob(ModuleHandle);

slsc_cfg_delete(ModuleHandle);

65
Simplified code structure, part 4 of 4 – Replaying a Module.

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

//
// After a Module has been recorded, it can simply be executed by initializing a
// new syncAXIS control instance and replaying the Module.
//
size_t SLHandle = 0;
size_t JobID = 0;

slsc_cfg_initialize_from_file(&SLHandle, “syncAXISConfig.xml“);

// The Trajectory configuration is saved within the Module
// Replaying the Module.
slsc_list_begin(SLHandle, &JobID);
slsc_list_playback_module(SLHandle, “Module.slm“);
slsc_list_end(SLHandle);

bool SucessfulExecution = startSingleJob(SLHandle);

if (!SucessfulExecution)
{

// !Insert proper error handling here!
}

slsc_cfg_delete(SLHandle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
12 Appendix E: Application Note – C#

350

innovators for industry

12 Appendix E: Application Note – C#

This chapter explains the main differences of the
syncAXIS-DLL functions under C# (compared to C).

In this Chapter:

• Differences in the syncAXIS-DLL function signa-
tures, page 350

• Differences in the Use of Callback Functions,
page 351

• Code Example 1 (C#), page 352

• Code Example 2 (C#), page 357

12.1 Differences in the
syncAXIS-DLL function
signatures

• Notation der Datentypen, page 350

• Pointer-Replacements for C#, page 350

12.1.1 Notation der Datentypen

12.1.2 Pointer-Replacements for C#

C, C++ C#

char* string

uint32_t uint

uint64_t ulong

C,
Example

C#,
Example

pointer

uint32_t
slsc_cfg_get_mode(size_t
Handle,
slsc_OperationMode*
Mode);

 out

uint
slsc_cfg_get_mode(uint
Handle, out
slsc_OperationMode
Mode);

pointer to constant

uint32_t
slsc_list_jump_abs(size_
t Handle, const double*
Target);

 array

uint
slsc_list_jump_abs(uint
Handle, double[]
Target);

pointer to constant

uint32_t
slsc_cfg_set_trajectory_
config(size_t Handle,
const
slsc_TrajectoryConfig*
TrajConfig);

 property

uint
slsc_cfg_set_trajectory_
config(uint Handle,
slsc_TrajectoryConfig
TrajConfig);

pointer to pointer

uint32_t
slsc_cfg_get_trajectory_
config(size_t Handle,
slsc_TrajectoryConfig**
TrajConfig);

 property of property

slsc_TrajectoryConfig
trajectoryConfig =
syncAXIS.slsc_cfg_get_tr
ajectory_config(Handle);
slsc_BlendModes
blendMode =
trajectoryConfig.Geometr
yConfig.BlendMode;

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
12 Appendix E: Application Note – C#

351

innovators for industry

12.2 Differences in the Use of
Callback Functions

Callback functions basically work the same in C and
C#. However, in C# you have to observe specific
programming principles:

• In C#, the callbacks are implemented by
inheritance of the callback classes, see
Code Example 1 (C#), page 352

• In general, a specified Callback function is imple-
mented on a Callback event of the respective type
by overriding the Run() method

• Objects that are to be accessed during the
Callback event (that is, when the Run() method is
called) must be created as member variables of
the derived callback class. These can, for example,
be initialized by a constructor.

• You could implement the required callback
“return values” in the derived class by
(alternatively):
– User-defined methods
– Properties

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
12 Appendix E: Application Note – C#

352

innovators for industry

12.3 Code Example 1 (C#)

// C# code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;
using System.Threading;

namespace MyDemo
{

class DemoCode
{

static void Main(string[] args)
{

string xmlFilePath = Directory.GetCurrentDirectory() + "\\..\\..\\..\\syncAXISConfig.xml";
uint handle = 0;
Console.WriteLine(xmlFilePath);

uint retVal = syncAXIS.slsc_cfg_initialize_from_file(out handle, xmlFilePath);

// Example - public static uint slsc_cfg_set_list_handling_mode_with_context(uint Handle,
// slsc_ListHandlingMode mode, ListHandlingCallback internal_CALLBACK);
slsc_ListHandlingMode mode = slsc_ListHandlingMode.slsc_ListHandlingMode_RepeatWhilePredicate;
if (mode == slsc_ListHandlingMode.slsc_ListHandlingMode_RepeatWhilePredicate)
{

MyListHandlingPredicate listHandlingPredicate = new MyListHandlingPredicate(retVal);
retVal |= syncAXIS.slsc_cfg_set_list_handling_mode_with_context(handle, mode, listHandlingPredicate);

}
else
{

// Default constructor
ListHandlingCallback listHandlingCallback = new ListHandlingCallback();
retVal |= syncAXIS.slsc_cfg_set_list_handling_mode_with_context(handle, mode, listHandlingCallback);

}

// Example - public static slsc_TrajectoryConfig slsc_cfg_get_trajectory_config(uint Handle);
// No deletion needed.
slsc_TrajectoryConfig trajectoryConfig = syncAXIS.slsc_cfg_get_trajectory_config(handle);
Console.WriteLine("Original GeometryConfig Blend Mode = " + trajectoryConfig.GeometryConfig.BlendMode);

// Example - public static uint slsc_cfg_set_trajectory_config(uint Handle,
// slsc_TrajectoryConfig TrajConfig);
trajectoryConfig.GeometryConfig.BlendMode = slsc_BlendModes.slsc_BlendModes_FixedBlending;
syncAXIS.slsc_cfg_set_trajectory_config(handle, trajectoryConfig);
Console.WriteLine("New GeometryConfig Blend Mode = " + trajectoryConfig.GeometryConfig.BlendMode);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
12 Appendix E: Application Note – C#

353

innovators for industry

// Example - public static uint slsc_cfg_register_callback_job_start_planned(uint Handle,
// JobCallback internal_CALLBACK);
Job_start_planned planningStarted = new Job_start_planned(handle);
retVal |= syncAXIS.slsc_cfg_register_callback_job_start_planned(handle, planningStarted);

// Example - public static uint slsc_cfg_register_callback_job_loaded_enough(uint Handle,
// JobCallback internal_CALLBACK);
AutoStart starter = new AutoStart(handle);
retVal |= syncAXIS.slsc_cfg_register_callback_job_loaded_enough(handle, starter);

// Example - public static uint slsc_cfg_register_callback_job_finished_executing(uint Handle,
// execTimeCallback internal_CALLBACK);
WaitForFinished waiter = new WaitForFinished();
retVal |= syncAXIS.slsc_cfg_register_callback_job_finished_executing(handle, waiter);

uint jobID = 1;

retVal |= syncAXIS.slsc_list_begin(handle, out jobID);

// Simple Job
double[] lowerMid = new double[] { 0.0, 0.0 };
double[] lowerRightCorner = new double[] { 10.0, 0.0 };
double[] upperRightCorner = new double[] { 10.0, 10.0 };
double[] upperLeftCorner = new double[] { -10.0, 10.0 };
double[] lowerLeftCorner = new double[] { -10.0, 0.0 };
retVal |= syncAXIS.slsc_list_jump_abs(handle, lowerMid);
retVal |= syncAXIS.slsc_list_mark_abs(handle, lowerRightCorner);
retVal |= syncAXIS.slsc_list_mark_abs(handle, upperRightCorner);
retVal |= syncAXIS.slsc_list_mark_abs(handle, upperLeftCorner);
retVal |= syncAXIS.slsc_list_mark_abs(handle, lowerLeftCorner);
retVal |= syncAXIS.slsc_list_mark_abs(handle, lowerMid);

retVal |= syncAXIS.slsc_list_end(handle);

while (waiter.GetFinishedState() == false)
{

Thread.Sleep(100);
}

Console.WriteLine("Return Value = " + retVal);

WriteError(handle);

syncAXIS.slsc_cfg_delete(handle);

Console.ReadKey();
}

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
12 Appendix E: Application Note – C#

354

innovators for industry

// Example - ListHandlingCallback internal_CALLBACK
public class MyListHandlingPredicate : ListHandlingCallback
{

uint returnVal;
bool flag;
uint bufferFull = 0x0010;

public MyListHandlingPredicate(uint returnValIn)
{

returnVal = returnValIn;
}
public override bool Run(uint returnValIn)
{

uint indicator = bufferFull & returnVal;

flag = (indicator == bufferFull);

if (flag)
{

Console.WriteLine("Buffer is full. List loading waits for free buffer.");
return flag;

}
else
{

return flag;
}

}
}

// Example - JobCallback internal_CALLBACK callback_job_start_planned
public class Job_start_planned : JobCallback
{

uint handle;

public Job_start_planned(uint handleIn)
{

handle = handleIn;
}

public override void Run(uint jobID)
{

Console.WriteLine("Planning started.");
}

}

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
12 Appendix E: Application Note – C#

355

innovators for industry

// Example - JobCallback internal_CALLBACK callback_job_loaded_enough
public class AutoStart : JobCallback
{

uint handle;

public AutoStart(uint handleIn)
{

handle = handleIn;
}

public override void Run(uint jobID)
{

slsc_ExecState rtc6State;
uint retVal;

retVal = syncAXIS.slsc_ctrl_get_exec_state(handle, out rtc6State);
if (retVal != 0)
{

Console.WriteLine("An Error occurred after slsc_ctrl_get_exec_state, return value = " + retVal);
}
while (rtc6State != slsc_ExecState.slsc_ExecState_ReadyForExecution)
{

retVal = syncAXIS.slsc_ctrl_get_exec_state(handle, out rtc6State);
if (retVal != 0)
{

Console.WriteLine("An Error occurred after slsc_ctrl_get_exec_state, return value = " + retVal);
}
Thread.Sleep(10);
Console.WriteLine("Waiting 10 ms for execution ready to run...");

}

retVal = syncAXIS.slsc_ctrl_start_execution(handle);
if (retVal != 0)
{

Console.WriteLine("An Error occurred after slsc_ctrl_start_execution. Return value = " + retVal);
}
else
{

Console.WriteLine("Execution started.");
}

}
}

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
12 Appendix E: Application Note – C#

356

innovators for industry

// Example - JobCallback internal_CALLBACK callback_job_finished_executing
public class WaitForFinished : ExecTimeCallback
{

bool isFinished = false;

public bool GetFinishedState()
{

return isFinished;
}

public override void Run(uint jobID, ulong progress, double execTime)
{

isFinished = true;
Console.WriteLine("Execution finished. Execution time: " + execTime + " sec.");

}
}

private static void WriteError(uint handle)
{

uint count = 0;
syncAXIS.slsc_ctrl_get_error_count(handle, out count);
if (count > 0)
{

Console.WriteLine(count + " errors detected.");
for (uint i = 0; i < count; i++)
{

ulong ErrorNr = 0;
string ErrorMessage = "";
syncAXIS.slsc_ctrl_get_error(handle, i, out ErrorNr, out ErrorMessage);
Console.WriteLine("ErrorMessage: " + ErrorMessage);

}
}
else
{

Console.WriteLine("No error occured!");
}
return;

}
}

}

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
12 Appendix E: Application Note – C#

357

innovators for industry

12.4 Code Example 2 (C#)

// C++ code section for educational purposes only.
// Do not execute this code on actual XL SCAN systems without prior modification and simulation!
// Observe the safety notices and disclaimer on page 16.
// Example MultiPara by slsc_list_multi_para_arc_abs
// = multi-part (more complex) Ramp
// No blending curves are activated.
// Pseudo code (not complete)

uint jobID = 0;
syncAXIS.slsc_list_begin(handle, out jobID);
double[] TargetPosition_0 = new double[] { 0.0, 0.0 };
double[] TargetPosition_1 = new double[] { 1.0, 1.0 };
double[] TargetPosition_2 = new double[] { 1.025, 1.025 };
double[] TargetPosition_3 = new double[] { 2.0, 1.0 };
double[] TargetPosition_4 = new double[] { 3.0, 0.0 };

syncAXIS.slsc_list_jump_abs(handle, TargetPosition_0);
syncAXIS.slsc_list_mark_abs(handle, TargetPosition_1);
double[] TargetParaDefault = new double[] { 1.0 };
syncAXIS.slsc_list_para_enable(handle, TargetParaDefault);

// Here is created: ArrayList of type slsc_ParaChannel.
var Channel1 = new slsc_ParaChannel();
Channel1.Add(new slsc_ParaSection { ds = 0.25, ParaTarget = 0.5 });
Channel1.Add(new slsc_ParaSection { ds = 0.6186678697087737, ParaTarget = 0.5 });
Channel1.Add(new slsc_ParaSection { ds = 0.25, ParaTarget = 1.0 });

// Here is created: ArrayList of type slsc_MultiParaChannels (ActiveChannel == 1).
var Paras = new slsc_MultiParaChannels();
Paras.Add(Channel1);
syncAXIS.slsc_list_multi_para_arc_abs(handle, TargetPosition_2, TargetPosition_3, Paras);

syncAXIS.slsc_list_mark_abs(handle, TargetPosition_4);
syncAXIS.slsc_list_jump_abs(handle, TargetPosition_0);

syncAXIS.slsc_list_end(handle);

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

358

innovators for industry

13 Appendix F: Reference of syncAXISConfig.xml Tags

13.1 xml-Structure Overview

• Legend
– This tag is optional
– This tag is allowed to occur more than once.
– 2 mutually exclusive meanings: this tag

allows exactly 1 child tag (“choice”) or any
number of child tags (“sequence”).

– Container, STANDARD, STANDARD***, NON-ST’D,
NON-ST’D*** is the Behavior on Module replay,
page 66 of this tag

Configuration Container

GeneralConfig Container

ACSController STANDARD

InitialOperationMode STANDARD***

InitialListHandlingMode STANDARD

DynamicViolationReaction STANDARD

LogConfig Container

LogfilePath STANDARD

Loglevel STANDARD

EnableConsoleLogging STANDARD

EnableFilelogging STANDARD

MaxLogfileSize STANDARD

MaxBackupFileCount STANDARD

BaseDirectoryPath STANDARD

SimulationConfig Container

SimulationMode STANDARD

SimOutputFileDirectory STANDARD

BinaryOutput STANDARD

DisableFileOutput STANDARD

RTCConfig Container

BoardIdentificationMethod STANDARD

ProgramFileDirectory STANDARD

Boards Container

RTC6 Container

SerialNumber STANDARD

HeadA STANDARD

HeadB STANDARD

EthSearch Container

Broadcast Container

IP STANDARD

NetMask STANDARD

IPScan Container

StartIp STANDARD

EndIp STANDARD

IPList Container

IPAddress STANDARD

EthMaxTimeout STANDARD

(*)

[]

{}

(*)

(*)

(*)

(*)

(*)

(*)

(*)

[]
(*)

{}(*)

[]
(*)

ScanDeviceConfig Container

DynamicLimits Container

Velocity NON-ST’D***

Acceleration NON-ST’D***

Jerk NON-ST’D***

CalculationDynamics Container

MarkDynamics Container

Acceleration NON-ST’D

Jerk NON-ST’D

JumpDynamics Container

Acceleration NON-ST’D

Jerk NON-ST’D

FieldLimits Container

XDirection STANDARD

YDirection STANDARD

ZDirection STANDARD

MonitoringLevel STANDARD

FocalLength STANDARD

Delay STANDARD***

ScanDeviceList Container

ScanDevice STANDARD

CorrectionFileList Container

CorrectionFilePath STANDARD

Alignment Container

Matrix Container

T11 STANDARD

T12 STANDARD

T21 STANDARD

T22 STANDARD

Offset STANDARD

BasePartDisplacement Container

Matrix Container

T11 STANDARD

T12 STANDARD

T21 STANDARD

T22 STANDARD

Offset STANDARD

DefaultCorrectionFile STANDARD

(*)

(*)

(*)

[]

[]

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

359

innovators for industry

LaserConfig Container

LaserMode STANDARD

LaserPortCfg Container

LaserOn STANDARD

Laser1 STANDARD

Laser2 STANDARD

LaserOutput STANDARD

LaserStandby STANDARD

QSwitchDelay STANDARD

FPulseKillerLength STANDARD

LaserControlFlags Container

LaserDisable STANDARD

PulseSwitchSetting STANDARD

LaserSignalPhaseShift STANDARD

LaserOnSignalActiveLow STANDARD

Laser1Laser2SignalActiveLow STANDARD

LaserPulsesAtRisingEdge STANDARD

OutputSynchronizationOn STANDARD

AutomaticLaserControl Container

ActiveChannel Container

Channel STANDARD***

AnalogOut1 STANDARD

Shift STANDARD

RadiusFactor STANDARD

DataPoint STANDARD

VelocityFactor STANDARD

DataPoint STANDARD

AnalogOut2 STANDARD

Shift STANDARD

RadiusFactor STANDARD

DataPoint STANDARD

VelocityFactor STANDARD

DataPoint STANDARD

PulseLength STANDARD

Shift STANDARD

RadiusFactor STANDARD

DataPoint STANDARD

VelocityFactor STANDARD

DataPoint STANDARD

HalfPeriod STANDARD

Shift STANDARD

RadiusFactor STANDARD

DataPoint STANDARD

VelocityFactor STANDARD

DataPoint STANDARD

SpotDistance STANDARD

Shift STANDARD

RadiusFactor STANDARD

DataPoint STANDARD

VelocityFactor STANDARD

DataPoint STANDARD

(*)

(*)

(*)

(*)

(*)

(*)

(*)

(*)

(*)

(*)

(*)

(*)

(*)

(*)

[](*)

(*)

[](*)

[](*)

(*)

[](*)

[](*)

(*)

[](*)

[](*)

(*)

[](*)

[](*)

(*)

[](*)

[](*)

TrajectoryConfig Container

MarkConfig Container

JumpSpeed NON-ST’D

MarkSpeed NON-ST’D

MinimalMarkSpeed NON-ST’D

LaserSwitchConfig Container

LaserPreTriggerTime STANDARD***

LaserSwitchOffsetTime STANDARD

LaserMinOffTime NON-ST’D

GeometryConfig Container

MaxBlendRadius NON-ST’D

ApproxBlendLimit NON-ST’D

BlendMode NON-ST’D

AutoCyclicGeometry NON-ST’D

SplineConversionLengthLimit NON-ST’D

SplineMode NON-ST’D

VectorResolution STANDARD

StageConfig Container

DelayShift STANDARD***

CTIME STANDARD***

MonitoringLevel STANDARD

StageList Container

Stage STANDARD

FieldLimits Container

XDirection STANDARD

YDirection STANDARD

ZDirection STANDARD

DynamicLimits Container

Velocity STANDARD

Acceleration STANDARD

Jerk STANDARD

CalculationDynamics Container

Velocity NON-ST’D***

Acceleration NON-ST’D***

Jerk NON-ST’D***

Alignment Container

Matrix Container

T11 STANDARD

T12 STANDARD

T21 STANDARD

T22 STANDARD

Offset STANDARD

StageAxisX STANDARD

StageAxisY STANDARD

SlecEtherCATNodeID STANDARD

(*)

(*)

(*)

(*)

(*)

[]

(*)

(*)

(*)

(*)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

360

innovators for industry

IOConfig Container

DefaultOutputs Container

LaserPinOut STANDARD

AnalogOut1 STANDARD

AnalogOut2 STANDARD

LaserInitSequence Container

Delay STANDARD

SetLaserPinOut STANDARD

SetAnalogOut1 STANDARD

SetAnalogOut2 STANDARD

SetExt1DigitalOut STANDARD

LaserShutdownSequence Container

Delay STANDARD

SetLaserPinOut STANDARD

SetAnalogOut1 STANDARD

SetAnalogOut2 STANDARD

SetExt1DigitalOut STANDARD

MotionDecompositionConfig Container

FilterBandwidth STANDARD

HeuristicConfig Container

DynamicReductionFunctions Container

DynamicReductionFunction Container

DataPoint NON-ST’D

HeuristicForJumpsOnly NON-ST’D

SystemConfig* INTERN – NICHT VERWENDEN

(*)

(*)

(*)

(*)

(*)

{}(*)

{}(*)

(*)

(*)

[](*)

[]
(*)

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

361

innovators for industry

13.2 xml Tags

XML tag Configuration

XML signature
(incl. defaults)

Configuration

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:Configuration
xmlns:cfg=“syncAXIS“
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance“
xsi:schemaLocation=“cfg syncAXIS_1_8.xsd“ Version=“1.7“>
</-- allowed/possible child tags

Configuration in the XML structure overview -->
</cfg:Configuration>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • Configuration is the topmost container tag in syncAXISConfig.xml.

Version info syncAXIS_1_8.xsd

XML tag GeneralConfig

XML signature
(incl. defaults)

GeneralConfig

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:GeneralConfig>
</-- allowed/possible child tags

GeneralConfig in the XML structure overview -->
</cfg:GeneralConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • GeneralConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

362

innovators for industry

XML tag ACSController

XML signature
(incl. defaults)

ACSController* = 127.0.0.1

’*’=optional; no ’*’=mandatory.

ACSController value: string (format ’N.N.N.N’).

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:ACSController>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:ACSController>127.0.0.1</cfg:ACSController>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Sets the IP address of the ACS Motion Controller in the EtherCAT network.

• Prior the first startup, make sure that the ACSController value is already set.

• Even for simulation mode, the ACSController value must be a valid entry.

• See also 0x 00 00 00 06 00 00 00 01 INIT_ACS_TCPIP.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

363

innovators for industry

XML tag InitialOperationMode

XML signature
(incl. defaults)

InitialOperationMode = ScannerAndStage

’*’=optional; no ’*’=mandatory.
InitialOperationMode value: string.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:InitialOperationMode>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:InitialOperationMode>ScannerAndStage</cfg:InitialOperationMode>

Settable via
API?

slsc_cfg_set_mode

Behavior on
Module replay

The parameter value of the replaying syncAXIS control instance is applied. Exceptions: See
Table page 66. See also Section ”Behavior on Module replay”, page 66.

Comment(s) • Sets the initial Operation mode of the syncAXIS control instance, see also enum
slsc_OperationMode.

• Allowed entries:
– ScannerOnly
– StageOnly
– ScannerAndStage

• The Operation mode is a fundamental parameter for the Trajectory planning and
defines the type of motion.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

364

innovators for industry

XML tag InitialListHandlingMode

XML signature
(incl. defaults)

InitialListHandlingMode = ReturnAtOnce

’*’=optional; no ’*’=mandatory.

InitialListHandlingMode value: string.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:InitialListHandlingMode>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:InitialListHandlingMode>RepeatWhileBufferFull</cfg:InitialListHandlingMode>

Settable via
API?

slsc_cfg_set_list_handling_mode

slsc_cfg_set_list_handling_mode_with_context

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Sets the initial list handling mode of the syncAXIS control instance, see also enum
slsc_ListHandlingMode. This setting specifies how buffering of the Job functions
(slsc_list_*) is handled.

• Allowed entries:
– ReturnAtOnce
– RepeatWhileBufferFull

• Notice: “RepeatWhilePredicate” is only settable via the API!

• In list handling mode ”RepeatWhileBufferFull” or ”RepeatWhilePredicate”, the
syncAXIS control instance is continuously trying to load positions to the RTC6 board,
“patiently” waiting for the buffer to be freed once it is full (which can be achieved by
starting the Job execution). Therefore, make sure that you fill the List asynchronously
to the Job start thread!

• If the list handling mode is set to ”ReturnAtOnce”, code 0x10 with the function that is
overloading the buffer is returned.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

365

innovators for industry

XML tag DynamicViolationReaction

XML signature
(incl. defaults)

DynamicViolationReaction = WarningOnly

’*’=optional; no ’*’=mandatory.

DynamicViolationReaction value: string.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:DynamicViolationReaction>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:DynamicViolationReaction>AbortImmediately</cfg:DynamicViolationReaction>

Settable via
API?

slsc_cfg_set_dynamic_violation_reaction

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines which reaction occurs automatically, as soon as a certain monitoring criterion
(dynamic limits, working field limits) is violated. Applies to hardware mode as well as
simulation mode.
Note: The monitoring criteria associated with DynamicViolationReaction are set separately
for scan devices and positioning stages under:

– <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:MonitoringLevel>
– <cfg:Configuration>  <cfg:StageConfig>  <cfg:MonitoringLevel>

• Allowed entries:
– WarningOnly
– AbortImmediately
– StopAndReport

• syncAXIS control uses to monitor working field and dynamics as:
– scan device dynamic limits the DynamicLimits values, page 388
– scan device working field limits the FieldLimits values, page 395
– scan device monitoring criterion the MonitoringLevel value, page 397
– positioning stage dynamic limits the FieldLimits values, page 454
– positioning stage working field limits the DynamicLimits values, page 456
– positioning stage monitoring criterion the MonitoringLevel values, page 452
– reaction on exceedances the DynamicViolationReaction values, page 365

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

366

innovators for industry

XML tag LogConfig

XML signature
(incl. defaults)

LogConfig

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:LogConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LogConfig>
</-- allowed/possible child tags

LogConfig in the XML structure overview -->
</cfg:LogConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • GeneralConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

367

innovators for industry

XML tag LogfilePath

XML signature
(incl. defaults)

LogfilePath = Error.log

’*’=optional; no ’*’=mandatory.

LogfilePath value: string.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:LogConfig>  <cfg:LogfilePath>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LogfilePath>[BaseDirectoryPath]/Log</cfg:LogfilePath>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Path of the log file that is created by the syncAXIS control instance, if file logging is
switched on (see EnableFilelogging).

• For [BaseDirectoryPath], see BaseDirectoryPath.

• If this file already exists, logging information is appended.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

368

innovators for industry

XML tag Loglevel

XML signature
(incl. defaults)

Loglevel = Warn

’*’=optional; no ’*’=mandatory.

Loglevel value: string.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:LogConfig>  <cfg:Loglevel>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:Loglevel>Warn</cfg:Loglevel>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • The Loglevel value sets the logging level, see Chapter 2.8 ”About the Logging in
syncAXIS control”, page 47.

• Allowed entries:
– Error

Generated are:
[ERROR] log file lines

– Warn
Generated are:
[ERROR] log file lines
[WARN] log file lines

– Info
Generated are:
[ERROR] log file lines
[WARN] log file lines
[INFO] log file lines

• [ERROR] log file lines indicate that the system is in error state.

• Example log file lines:
19-10-04 18:16:10:669 [ERROR] 18:16:10.669762 ErrorCode: 0x0000000500000001 ErrorMessage:

“Init failed!“

19-09-19 16:14:21:930 [WARN] Scanner dynamic breached or violated position limits: 0.

Regarding Job 1 in Segment 0

19-10-08 18:16:30:508 [INFO] RTC6-SLEC establish handshake, activating stage

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

369

innovators for industry

XML tag EnableConsoleLogging

XML signature
(incl. defaults)

EnableConsoleLogging = false

’*’=optional; no ’*’=mandatory.

EnableConsoleLogging value: boolean.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:LogConfig>  <cfg:EnableConsoleLogging>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:EnableConsoleLogging>true</cfg:EnableConsoleLogging>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Specifies whether console logging is to be switched on or off.

• See Chapter 5 ”Error Codes with slsc_ctrl_get_error, Log File and Console”, page 282.

Version info syncAXIS_1_8.xsd

XML tag EnableFilelogging

XML signature
(incl. defaults)

EnableFilelogging = true

’*’=optional; no ’*’=mandatory.

EnableFilelogging value: boolean.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:LogConfig>  <cfg:EnableFilelogging>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:EnableFilelogging>true</cfg:EnableFilelogging>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Specifies whether file logging is to be switched on or off.

• See Chapter 5 ”Error Codes with slsc_ctrl_get_error, Log File and Console”, page 282.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

370

innovators for industry

XML tag MaxLogfileSize

XML signature
(incl. defaults)

MaxLogfileSize* = 5242880

’*’=optional; no ’*’=mandatory.

MaxLogfileSize value: positive integer.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:LogConfig>  <cfg:MaxLogfileSize>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:MaxLogfileSize>26214400</cfg:MaxLogfileSize>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Specifies the maximum size of the individual log files.

Version info syncAXIS_1_8.xsd

XML tag MaxBackupFileCount

XML signature
(incl. defaults)

MaxBackupFileCount* = 10

’*’=optional; no ’*’=mandatory.

MaxBackupFileCount value: non-negative integer.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:LogConfig>  <cfg:MaxBackupFileCount>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:MaxBackupFileCount>0</cfg:MaxBackupFileCount>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Specifies how many files are to be backed up (by adding a counting integer to the file
name) before the current file is going to be continuously overwritten.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

371

innovators for industry

XML tag BaseDirectoryPath

XML signature
(incl. defaults)

BaseDirectoryPath* = ““

’*’=optional; no ’*’=mandatory.

““ means empty string.

BaseDirectoryPath value: string.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:BaseDirectoryPath>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:BaseDirectoryPath>${BASE_PATH}</cfg:BaseDirectoryPath>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • The BaseDirectoryPath value functions as macro which can be inserted as
’[BaseDirectoryPath]\’ with certain tags (SimOutputFileDirectory, LogfilePath,
ProgramFileDirectory. Its purpose is to make folderpath specifications shorter and easier
to change.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

372

innovators for industry

XML tag SimulationConfig

XML signature
(incl. defaults)

SimulationConfig

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:SimulationConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:SimulationConfig>
</-- allowed/possible child tags

SimulationConfig in the XML structure overview -->
</cfg:SimulationConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • GeneralConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

373

innovators for industry

XML tag SimulationMode

XML signature
(incl. defaults)

SimulationMode = true

’*’=optional; no ’*’=mandatory.

SimulationMode value: boolean.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:SimulationConfig>  <cfg:SimulationMode>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:SimulationMode>true</cfg:SimulationMode>

Settable via
API?

slsc_cfg_set_simulation_setting

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • The SimulationMode value specifies whether the simulation mode or hardware mode is to
be switched on. See also Chapter 2.4 ”About Initializing syncAXIS control-based User
Programs”, page 26 and Chapter 2.5 ”About the syncAXIS control Simulation Mode”,
page 31.

• If true: the syncAXIS control instance is not going to communicate with any hardware
– except the Dongle.

• The Trajectory planning results are written to simulation files, if the simulation file
generation is switched on by DisableFileOutput.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

374

innovators for industry

XML tag SimOutputFileDirectory

XML signature
(incl. defaults)

SimOutputFileDirectory* = ““

’*’=optional; no ’*’=mandatory.

““ means empty string.

SimOutputFileDirectory value: string.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:SimulationConfig> 
<cfg:SimOutputFileDirectory>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:SimOutputFileDirectory>[BaseDirectoryPath]/Simulate/</cfg:SimOutputFileDirectory>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • For [BaseDirectoryPath], see BaseDirectoryPath.

• The SimOutputFileDirectory value defines the location where the simulation file
(see DisableFileOutput) is to be saved.

• For the simulation file naming, see page 31.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

375

innovators for industry

XML tag BinaryOutput

XML signature
(incl. defaults)

BinaryOutput* = false

’*’=optional; no ’*’=mandatory.

BinaryOutput value: boolean.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:SimulationConfig>  <cfg:BinaryOutput>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:BinaryOutput>true</cfg:BinaryOutput>

=> The simulation files (see DisableFileOutput) are generated in binary format.

<cfg:BinaryOutput>false</cfg:BinaryOutput>

=> The simulation files (see DisableFileOutput) are generated in ASCII format.

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines whether simulation files are generated in ASCII or binary format.

• ASCII format is well suited for small (sample) Jobs. The resulting simulation files can still
be analyzed well by a human with the help of a text editor.

• Binary format is more suitable for large Jobs. Compared to ASCII format, the resulting
simulation files are written faster, are smaller, syncAXIS Viewer can load them faster
and are also not subject to any size limitation.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

376

innovators for industry

XML tag DisableFileOutput

XML signature
(incl. defaults)

DisableFileOutput* = false

’*’=optional; no ’*’=mandatory.

DisableFileOutput value: boolean.

XML path(s) <cfg:Configuration>  <cfg:GeneralConfig>  <cfg:SimulationConfig>  <cfg:DisableFileOutput>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:DisableFileOutput>false</cfg:DisableFileOutput>

=> A simulation file (see DisableFileOutput) is generated.
For the simulation file naming, see page 31.

<cfg:DisableFileOutput>true</cfg:DisableFileOutput>

=> A simulation file (see DisableFileOutput) is not generated.

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines whether a simulation file is generated or not.

• The simulation process is much faster with true than with false.

• The setting true is recommended when (not the entire trajectory, but only) the Job
characteristics (“Key“, see enum slsc_JobCharacteristic) are of interest:
the max. position and dynamic values can be queried by
slsc_ctrl_get_job_characteristic.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

377

innovators for industry

XML tag RTCConfig

XML signature
(incl. defaults)

RTCConfig

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:RTCConfig>
</-- allowed/possible child tags

RTCConfig in the XML structure overview -->
</cfg:RTCConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • RTCConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

378

innovators for industry

XML tag BoardIdentificationMethod

XML signature
(incl. defaults)

BoardIdentificationMethod = UseFirstFound

’*’=optional; no ’*’=mandatory.

BoardIdentificationMethod value: string.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:BoardIdentificationMethod>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:BoardIdentificationMethod>BySerialNumber</cfg:BoardIdentificationMethod>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Allowed entries:
– UseFirstFound
– BySerialNumber

• Determines which RTC6 is to be used for this syncAXIS control instance.

• If there is only one, with ”UseFirstFound” the first RTC6 found by the RTC6DLL.dll is used.

• Using ”BySerialNumber” a specific RTC6 can by selected by its serial number, see
SerialNumber.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

379

innovators for industry

XML tag ProgramFileDirectory

XML signature
(incl. defaults)

ProgramFileDirectory* = ““

’*’=optional; no ’*’=mandatory.

““ means empty string.

ProgramFileDirectory value: string.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:ProgramFileDirectory>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:ProgramFileDirectory>[BaseDirectoryPath]/../RTC6</cfg:ProgramFileDirectory>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Example:
<cfg:ProgramFileDirectory>[BaseDirectoryPath]/../RTC6</cfg:ProgramFileDirectory>

• For [BaseDirectoryPath], see BaseDirectoryPath.

• Sets the folder path to the RTC6 files RTC6RBF.rbf, RTC6DAT.dat and RTC6OUT.out.

• These are loaded onto the RTC6:
– when initializing the syncAXIS control instance after every RTC6 power cycle

(that is, with RTC6 PCI Express Boards the PC startup)
– when a version mismatch (between the RTC6DLL.dll in use and the RTC6 files running

on the RTC6) occurred, for example, if iSCANcfg.exe has been started previously with
different RTC6 files.

– Upon MasterSlaveSynchronizer.exe start (from the syncAXISConfig.xml which have been
specified as calling parameter)

• Note that loading RTC6 files:
– resets the RTC6 board
– restarts the clock
– destroys a synchronization (between all RTC6 boards and also the ACS EtherCAT net-

work) previously achieved by MasterSlaveSynchronizer.exe

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

380

innovators for industry

XML tag Boards

XML signature
(incl. defaults)

Boards

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:Boards>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:Boards>
</-- allowed/possible child tags

Boards in the XML structure overview -->
</cfg:Boards>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • Boards is only a container tag. No value(s), no attribute(s).

• With the child tags of Boards, all to-be-used RTC6 boards are configured.

Version info syncAXIS_1_8.xsd

XML tag RTC6

XML signature
(incl. defaults)

RTC6[]

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:Boards>  <cfg:RTC6>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:RTC6>
</-- allowed/possible child tags

RTC6 in the XML structure overview -->
</cfg:RTC6>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • RTC6 is only a container tag. No value(s), no attribute(s).

• syncAXIS_1_8.xsd allows up to 4 RTC6 tags.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

381

innovators for industry

XML tag SerialNumber

XML signature
(incl. defaults)

SerialNumber* = 0

’*’=optional; no ’*’=mandatory.

SerialNumber value: non-negative integer.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:Boards>  <cfg:RTC6>  <cfg:SerialNumber>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:SerialNumber>123457</cfg:SerialNumber>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines the serial number of the RTC6 board to which the hardware specified under
HeadA and HeadB is connected.

• The SerialNumber value is only evaluated, if ”BySerialNumber” is specified at
BoardIdentificationMethod.

Version info syncAXIS_1_8.xsd

XML tag HeadA

XML signature
(incl. defaults)

HeadA

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:Boards>  <cfg:RTC6>  <cfg:HeadA>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:HeadA>ScanDevice1</cfg:HeadA>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Scan device or positioning stage connected to the first scan head connector
(SCANHEAD).

• Allowed entries: see enum slsc_ScanDevice and enum slsc_Stage.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

382

innovators for industry

XML tag HeadB

XML signature
(incl. defaults)

HeadB

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:Boards>  <cfg:RTC6>  <cfg:HeadB>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:HeadB>Stage1</cfg:HeadB>

or,

<cfg:HeadB>None</cfg:HeadB>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Scan device or positioning stage connected to the second scan head connector
(2. SCANHEAD).

• Allowed entries: see enum slsc_ScanDevice and enum slsc_Stage.

Version info syncAXIS_1_8.xsd

XML tag EthSearch

XML signature
(incl. defaults)

EthSearch{}*

’*’=optional; no ’*’=mandatory.

’{}’=here: only one of the child tags is allowed (“choice“).

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:EthSearch>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:EthSearch>
</-- allowed/possible child tags

EthSearch in the XML structure overview -->
</cfg:EthSearch>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • EthSearch is only a container tag. No value(s), no attribute(s).

• With the child tag (’{}’= here: only one of the child tags is allowed (“choice“)) of
EthSearch the RTC6 Ethernet board(s) is (are) configured.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

383

innovators for industry

XML tag Broadcast

XML signature
(incl. defaults)

Broadcast

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:EthSearch>  <cfg:Broadcast>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:EthSearch>
<cfg:Broadcast>

<cfg:IP>169.254.1.0</cfg:IP>
<cfg:NetMask>255.255.0.0</cfg:NetMask>

</cfg:Broadcast>
</cfg:EthSearch>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • Broadcast is only a container tag. No value(s), no attribute(s).

• The child tags of Broadcast define the subnet in which a broadcast search is to be carried
out.

• For more information on RTC6 Ethernet boards, refer to the RTC6 Manual.

IP

• XML signature (incl. defaults): IP = 169.254.1.0

• Specifies the network address of the subnet for the broadcast search.

• Format: IP Adress in dotted decimal notation.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

NetMask

• XML signature (incl. defaults): NetMask = 255.255.0.0

• Specifies the network mask of the subnet for the broadcast search.

• Format: IP Adress in dotted decimal notation.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

384

innovators for industry

XML tag IPScan

XML signature
(incl. defaults)

IPScan

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:EthSearch>  <cfg:IPScan>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:EthSearch>
<cfg:IPScan>

<cfg:StartIp>169.254.1.0</cfg:StartIp>
<cfg:EndIp>169.254.1.100</cfg:EndIp>

</cfg:IPScan>
</cfg:EthSearch>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • IPScan is only a container tag. No value(s), no attribute(s).

• The child tags of IPScan define the IP addresses for which an IP scan is to be carried out.
Network packets are sent to these IP addresses.

• For more information on RTC6 Ethernet boards, refer to the RTC6 Manual.

StartIp

• XML signature (incl. defaults): StartIp = 169.254.1.0

• Specifies the lower IP range boundary for the IP scan.

• Format: IP Adress in dotted decimal notation.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

EndIp

• XML signature (incl. defaults): EndIp = 169.254.1.100

• Specifies the upper IP range boundary for the IP scan.

• syncAXIS_1_8.xsd allows up to 4 IPAddress tags.

• Format: IP Adress in dotted decimal notation.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

385

innovators for industry

XML tag IPList

XML signature
(incl. defaults)

IPList

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:EthSearch>  <cfg:IPList>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:EthSearch>
<cfg:IPList>

<cfg:IPAddress>192.168.0.1</cfg:IPAddress>
<cfg:IPAddress>192.168.0.2</cfg:IPAddress>
<cfg:IPAddress>192.168.0.3</cfg:IPAddress>

</cfg:IPList>
</cfg:EthSearch>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • IPList is only a container tag. No value(s), no attribute(s).

• The child tags of IPList define the IP addresses for which an IP scan is to be carried out.
Network packets are sent to these IP addresses.

• For more information on RTC6 Ethernet boards, refer to the RTC6 Manual.

IPAddress

• XML signature (incl. defaults): IPAddress[] = 169.254.1.0

• Specifies the IP address of an RTC6 Ethernet board.

• syncAXIS_1_8.xsd allows up to 255 IPAddress tags.

• Format: IP Adress in dotted decimal notation.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

386

innovators for industry

XML tag EthMaxTimeout

XML signature
(incl. defaults)

EthMaxTimeout

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

XML path(s) <cfg:Configuration>  <cfg:RTCConfig>  <cfg:EthSearch>  <cfg:EthMaxTimeout>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:EthSearch>
<cfg:EthMaxTimeout>2.0</cfg:EthMaxTimeout>

</cfg:EthSearch>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines the maximal Ethernet timeout.

• The default value 2.0 means 2 s.

• A change of the EthMaxTimeout value occurs as a call of the RTC6 command
eth_set_com_timeouts_auto(MaxTimeout) with MaxTimeout = (EthMaxTimeout in ms).

• For more information on RTC6 Ethernet boards, refer to the RTC6 Manual.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

387

innovators for industry

XML tag ScanDeviceConfig

XML signature
(incl. defaults)

ScanDeviceConfig

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:ScanDeviceConfig>
</-- allowed/possible child tags

ScanDeviceConfig in the XML structure overview -->
</cfg:ScanDeviceConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • ScanDeviceConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

388

innovators for industry

XML tag DynamicLimits

XML signature
(incl. defaults)

DynamicLimits

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:DynamicLimits>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:DynamicLimits>

<cfg:Velocity Unit=“rad/s“>90</cfg:Velocity>

<cfg:Acceleration Unit=“rad/s^2“>1.1314e5</cfg:Acceleration>

<cfg:Jerk Unit=“rad/s^3“>4e9</cfg:Jerk>

</cfg:DynamicLimits>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • DynamicLimits is only a container tag. No value(s), no attribute(s).

• The DynamicLimits child tags Velocity, Acceleration, Jerk serve to specify the maximum
dynamic capabilities of the intended scan device type (for example, excelliSCAN 14
with special tuning, excelliSCAN 20 with standard tuning).

• Special case: syncAXIS Viewer uses the values at Velocity, Acceleration and Jerk to
visualize the positioning stage working field and to indicate dynamic limit value
exceedances.

• syncAXIS control uses to monitor working field and dynamics as:
– scan device dynamic limits the DynamicLimits values, page 388
– scan device working field limits the FieldLimits values, page 395
– scan device monitoring criterion the MonitoringLevel value, page 397
– positioning stage dynamic limits the FieldLimits values, page 454
– positioning stage working field limits the DynamicLimits values, page 456
– positioning stage monitoring criterion the MonitoringLevel values, page 452
– reaction on exceedances the DynamicViolationReaction values, page 365

Velocity

• XML signature (incl. defaults): Velocity = 90.0 (Unit*)

• Settable via API?: slsc_cfg_set_dynamic_limits_scan_device

• The maximum speed the scan device type is capable of

• The default value 90 [rad/s] is that of an excelliSCAN 14 with standard tuning.
The value for an excelliSCAN 20 with standard tuning is 35 [rad/s]

• Behavior on Module replay: The Module is rejected, if the replaying
syncAXIS control instance is in Operation mode ScannerOnly or ScannerAndStage and the
Velocity value is smaller than MarkSpeed value or JumpSpeed value in the Module. In this
case, you need to record a new Module with correspondingly different
parameter value. See also Section ”Behavior on Module replay”, page 66.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

389

innovators for industry

Comment(s)
(cont’d)

Acceleration

• XML signature (incl. defaults): Acceleration = 1.1314e5 (Unit*)

• Settable via API?: slsc_cfg_set_dynamic_limits_scan_device

• The maximum acceleration the scan device type is capable of

• The default value 1.1314e5 [rad/s²] is that of an excelliSCAN 14 with standard tuning.
The value for an excelliSCAN 20 with standard tuning is 56000 [rad/s²]

• Behavior on Module replay: The Module is rejected, if the replaying
syncAXIS control instance is in Operation mode ScannerOnly or ScannerAndStage and the
Acceleration value is smaller than in the Module. In this case, you need to record a new
Module with correspondingly different parameter value. See also Section ”Behavior on
Module replay”, page 66.

Jerk

• XML signature (incl. defaults): Jerk = 4e9 (Unit*)

• Settable via API?: slsc_cfg_set_dynamic_limits_scan_device

• The maximum jerk the scan device type is capable of

• The default value 4e9 [rad/s³] is that of an excelliSCAN 14 with standard tuning.
The value for an excelliSCAN 20 with standard tuning is 10e9 [rad/s³]

• Behavior on Module replay: The Module is rejected, if the replaying
syncAXIS control instance is in Operation mode ScannerOnly or ScannerAndStage and the
Jerk value is smaller than in the Module. In this case, you need to record a new Module
with correspondingly different parameter value. See also Section ”Behavior on Module
replay”, page 66.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

390

innovators for industry

XML tag CalculationDynamics

XML signature
(incl. defaults)

CalculationDynamics

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:CalculationDynamics>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:CalculationDynamics>
</-- allowed/possible child tags

CalculationDynamics in the XML structure overview -->
</cfg:CalculationDynamics>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • CalculationDynamics is only a container tag. No value(s), no attribute(s).

• The child tags of CalculationDynamics are used to configure which acceleration & jerk
maximum values are used in Trajectory planning calculations for the scan devices.
Therefore, these are “planning upper limits” but not planned accelerations or planned
jerks. The values are specified in separate child tags:
– MarkDynamics for markings
– JumpDynamics for jumps
Note that the corresponding speed maximum values are configured under:

– <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:JumpSpeed …>

– <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:MarkSpeed …>

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

391

innovators for industry

XML tag MarkDynamics

XML signature
(incl. defaults)

MarkDynamics

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:CalculationDynamics> 
<cfg:MarkDynamics>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:MarkDynamics>
<cfg:Acceleration>1.1314e5</cfg:Acceleration>
<cfg:Jerk>4e9</cfg:Jerk>

</cfg:MarkDynamics>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • MarkDynamics is only a container tag. No value(s), no attribute(s).

• The child tags of MarkDynamics refer to values for markings, see page 390.
For the values for jumps there is JumpDynamics.

Acceleration

• XML signature (incl. defaults): Acceleration = 1.1314e5 (Unit*)

• Specifies the maximum acceleration value used in Trajectory planning calculations for
the scan devices.

• Allowed entries:
–  0.00001
Unit: rad/s2.

Format: double.

• Caution! syncAXIS control uses the Acceleration value = MarkAngularAcc =
MarkAngularAcc to plan trajectories for the Operation modes “ScannerOnly“ and
“ScannerAndStage”. Make sure that the entered values are correct.

• Settable via API?:
slsc_cfg_set_calculation_dynamics_mark_scan_device(MarkAngularAcc)
slsc_list_set_calculation_dynamics_mark_scan_device(MarkAngularAcc)

• Behavior on Module replay: Non-Standard behavior: The parameter value of the
replaying syncAXIS control instance is not applied. If you want to vary the
parameter value, then you need to record a new Module each time for this.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

392

innovators for industry

Comment(s)
(cont’d)

Jerk

• XML signature (incl. defaults): Jerk = 4e9 (Unit*)

• Specifies the maximum jerk value used in Trajectory planning calculations for the
scan devices.

• Allowed entries:
–  0.00001
Unit: rad/s3.

Format: double.

• Caution! syncAXIS control uses the Jerk value = MarkAngularJerk = MarkAngularJerk to
plan trajectories for the Operation modes “ScannerOnly“ and “ScannerAndStage”. Make
sure that the entered values are correct.

• Settable via API?:
slsc_cfg_set_calculation_dynamics_mark_scan_device(MarkAngularJerk)
slsc_list_set_calculation_dynamics_mark_scan_device(MarkAngularJerk)

• Behavior on Module replay: Non-Standard behavior: The parameter value of the
replaying syncAXIS control instance is not applied. If you want to vary the
parameter value, then you need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

393

innovators for industry

XML tag JumpDynamics

XML signature
(incl. defaults)

JumpDynamics

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:CalculationDynamics> 
<cfg:JumpDynamics>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:JumpDynamics>
<cfg:Acceleration>1.1314e5</cfg:Acceleration>
<cfg:Jerk>4e9</cfg:Jerk>

</cfg:JumpDynamics>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • JumpDynamics is only a container tag. No value(s), no attribute(s).

• The child tags of JumpDynamics refer to values for jumps, see page 390.
For the values for markers there is MarkDynamics.

Acceleration

• XML signature (incl. defaults): Acceleration = 1.1314e5 (Unit*)

• Specifies the maximum acceleration value used in Trajectory planning calculations for
the scan devices.

• Allowed entries:
–  0.00001
Unit: rad/s2.

Format: double.

• Caution! syncAXIS control uses the Acceleration value = JumpAngularAcc =
JumpAngularAcc to plan trajectories for the Operation modes “ScannerOnly“ and
“ScannerAndStage”. Make sure that the entered values are correct.

• Settable via API?:
slsc_cfg_set_calculation_dynamics_jump_scan_device(JumpAngularAcc)
slsc_list_set_calculation_dynamics_jump_scan_device(JumpAngularAcc)

• Behavior on Module replay: Non-Standard behavior: The parameter value of the
replaying syncAXIS control instance is not applied. If you want to vary the
parameter value, then you need to record a new Module each time for this.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

394

innovators for industry

Comment(s)
(cont’d)

Jerk

• XML signature (incl. defaults): Jerk = 4e9 (Unit*)

• Specifies the maximum jerk value used in Trajectory planning calculations for the
scan devices.

• Allowed entries:
–  0.00001
Unit: rad/s3.

Format: double.

• Caution! syncAXIS control uses the Jerk value = JumpAngularJerk = JumpAngularJerk to
plan trajectories for the Operation modes “ScannerOnly“ and “ScannerAndStage”. Make
sure that the entered values are correct.

• Settable via API?:
slsc_cfg_set_calculation_dynamics_jump_scan_device(JumpAngularJerk)
slsc_list_set_calculation_dynamics_jump_scan_device(JumpAngularJerk)

• Behavior on Module replay: Non-Standard behavior: The parameter value of the
replaying syncAXIS control instance is not applied. If you want to vary the
parameter value, then you need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

395

innovators for industry

XML tag FieldLimits

XML signature
(incl. defaults)

FieldLimits

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:FieldLimits>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:FieldLimits>

<cfg:XDirection Unit=“mm“ Max=“27“ Min=“-27“ />

<cfg:YDirection Unit=“mm“ Max=“27“ Min=“-27“ />

</cfg:FieldLimits>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • FieldLimits is only a container tag. No value(s), no attribute(s).

• The FieldLimits child tags XDirection and YDirection serve to specify the working field
limits of the intended scan device type.

• syncAXIS control uses to monitor working field and dynamics as:
– scan device dynamic limits the DynamicLimits values, page 388
– scan device working field limits the FieldLimits values, page 395
– scan device monitoring criterion the MonitoringLevel value, page 397
– positioning stage dynamic limits the FieldLimits values, page 454
– positioning stage working field limits the DynamicLimits values, page 456
– positioning stage monitoring criterion the MonitoringLevel values, page 452
– reaction on exceedances the DynamicViolationReaction values, page 365

• syncAXIS control does not use the values at XDirection and YDirection to plan trajec-
tories!

• syncAXIS Viewer uses the values for values at XDirection and YDirection to visualize the
scan device working field and to indicate limit value exceedances.

• The entered XDirection and YDirection do not need to correspond the usable
working field which is defined by the correction file (*.ct5). Lower field boundaries can
also be set, if a smaller part of the working field is to be monitored. Higher field bound-
aries should not be set.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

396

innovators for industry

Comment(s)
(cont’d)

XDirection

• XML signature (incl. defaults): XDirection (Unit*, Max, Min)

• Max, Min: double.

• Settable via API?: slsc_cfg_set_field_limits_scan_device

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

YDirection

• XML signature (incl. defaults): YDirection (Unit*, Max, Min)

• Max, Min: double.

• Settable via API?: slsc_cfg_set_field_limits_scan_device

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

ZDirection

• This parameter is currently reserved!

• XML signature (incl. defaults): ZDirection* (Unit*, Max, Min)

• Max, Min: double.

• Settable via API?: slsc_cfg_set_field_limits_scan_device

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

397

innovators for industry

XML tag MonitoringLevel

XML signature
(incl. defaults)

MonitoringLevel = Position

’*’=optional; no ’*’=mandatory.

MonitoringLevel value: string.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:MonitoringLevel>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:MonitoringLevel>Acceleration</cfg:MonitoringLevel>

Settable via
API?

slsc_cfg_set_scan_device_dynamic_monitoring_level

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines a criterion for which the scan devices are to be monitored.

• The criterion does not apply to the positioning stages – the dedicated tag
MonitoringLevel, see page 452, exists for these.

• Exceedances automatically trigger the reaction defined in DynamicViolationReaction.

• Allowed entries:
– Deactivated
– Position
– Velocity
– Acceleration
– Jerk

• syncAXIS control uses to monitor working field and dynamics as:
– scan device dynamic limits the DynamicLimits values, page 388
– scan device working field limits the FieldLimits values, page 395
– scan device monitoring criterion the MonitoringLevel value, page 397
– positioning stage dynamic limits the FieldLimits values, page 454
– positioning stage working field limits the DynamicLimits values, page 456
– positioning stage monitoring criterion the MonitoringLevel values, page 452
– reaction on exceedances the DynamicViolationReaction values, page 365

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

398

innovators for industry

XML tag FocalLength

XML signature
(incl. defaults)

FocalLength* = 100 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:FocalLength …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:FocalLength Unit=“mm“>100</cfg:FocalLength>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • The focal length of the scan system. Depends on the optics used.

• Caution! syncAXIS control uses these values to plan trajectories for the
Operation modes “ScannerOnly“ and “ScannerAndStage”. Make sure that the entered values
are correct.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

399

innovators for industry

XML tag Delay

XML signature
(incl. defaults)

Delay* = 0.00125 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:Delay …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:Delay Unit=“s“>0.00125</cfg:Delay>

Settable via
API?

Not possible.

Behavior on
Module replay

The parameter value of the replaying syncAXIS control instance is applied. If the calculated
(from <cfg:Configuration>  <cfg:StageConfig>  <cfg:CTIME …> and <cfg:Configuration> 

<cfg:StageConfig>  <cfg:DelayShift …>) positioning stage delay differs from the one in the
Module, then [WARN] log file lines are generated. “SIGNAL” functions included in the
Module that have a negative delay are not executed, if the absolute value of the delay is
greater than either largest scan device delay (<cfg:Configuration>  <cfg:ScanDeviceConfig> 

<cfg:Delay …>) or calculated positioning stage delay. See also Section ”Behavior on Module
replay”, page 66.

Comment(s) • Delay of the scan system.

• excelliSCAN with standard tuning used for syncAXIS control have a typical delay of
1.25 ms.

• Notice! The entries in a simulation file are shifted (among others) by this delay. This is
taken into account in the syncAXIS Viewer. For a “simpler” simulation the scan device
delay value (here at Delay) and the positioning stage delay value (at CTIME) can be set
each to 0.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

400

innovators for industry

XML tag ScanDeviceList

XML signature
(incl. defaults)

ScanDeviceList

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:ScanDeviceList>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:ScanDeviceList>
</-- allowed/possible child tags

ScanDeviceList in the XML structure overview -->
</cfg:ScanDeviceList>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • ScanDeviceList is only a container tag. No value(s), no attribute(s).

• With the child tags of ScanDeviceList, all to-be-used scan devices are configured.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

401

innovators for industry

XML tag ScanDevice

XML signature
(incl. defaults)

ScanDevice[] (Name)

’*’=optional; no ’*’=mandatory.

Name attribute value: string.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:ScanDeviceList>  <cfg:ScanDevice …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:ScanDevice Name=“ScanDevice1“>
</-- allowed/possible child tags see

ScanDevice in the XML structure overview -->
</cfg:ScanDevice>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • ScanDevice is also a container tag. No value(s), 1 attribute: Name.

• With syncAXIS_1_8.xsd allowed ScanDevice tags:
– up to 4

• Allowed Name attribute value, see enum slsc_ScanDevice:
”ScanDevice1”, ”ScanDevice2”, ”ScanDevice3”, ”ScanDevice4”.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

402

innovators for industry

XML tag CorrectionFileList

XML signature
(incl. defaults)

CorrectionFileList

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:ScanDeviceList>  <cfg:ScanDevice …> 
<cfg:CorrectionFileList>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:CorrectionFileList>
</-- allowed/possible child tags see

CorrectionFileList in the XML structure overview -->
</cfg:CorrectionFileList>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • CorrectionFileList is only a container tag. No value(s), no attribute(s).

• With the child tags of CorrectionFileList, all to-be-used correction files are configured.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

403

innovators for industry

XML tag CorrectionFilePath

XML signature
(incl. defaults)

CorrectionFilePath[] = ““ (CalibrationFactor* = -1)

’*’=optional; no ’*’=mandatory.

CalibrationFactor value: double.
–1: The calibration factor is read from the correction file.

Folder path: string.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:ScanDeviceList>  <cfg:ScanDevice …> 
<cfg:CorrectionFileList>  <cfg:CorrectionFilePath …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:CorrectionFilePath CalibrationFactor=“-1“>C:\folderpath
</cfg:CorrectionFilePath>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • syncAXIS_1_8.xsd allows up to 4 CorrectionFilePath tags.

• CorrectionFilePath creates an entry in the syncAXIS-DLL-internal list of correction files.
The first two correction files are written onto the RTC6 memory and then, can be
quickly selected by slsc_ctrl_select_correction_file.

• If the CalibrationFactor value is empty or invalid, a 1to1 correction file is loaded.

• For more information on correction files, refer to the RTC6 Manual.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

404

innovators for industry

XML tag Alignment

XML signature
(incl. defaults)

Alignment

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:ScanDeviceList>  <cfg:ScanDevice …> 
<cfg:Alignment>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:Alignment>

<cfg:Matrix>

<cfg:T11>1</cfg:T11>

<cfg:T12>0</cfg:T12>

<cfg:T21>0</cfg:T21>

<cfg:T22>1</cfg:T22>

</cfg:Matrix>

<cfg:Offset X=“0“ Y=“0“ />

</cfg:Alignment>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • Alignment is only a container tag. No value(s), no attribute(s).

• The Alignment-child tags Matrix and Offset are available to compensate for assembly
errors in Multi-Head systems.

• The positions sent to a respective scan device have been transformed in a way that
scan device coordinate system and reference system (for example, the positioning
stage coordinate system) do match.

• Alignment is not applied to the Trajectory planning.

• Alignment occurs only on the RTC6.

• A simulation file does not contain alignment transformation (simulation files show the
marking not taking into account any miscalibration).

• The matrix must be invertible, but does not need to be normed.

• For further information, see Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332.

Matrix

• XML signature (incl. defaults): Matrix

• Is container tag (only). No value(s), no attribute(s).

• Settable via API?: Not possible.

• Behavior on Module replay: No behavior as it is a container tag

Matrix T11 T12
T21 T22

=

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

405

innovators for industry

Comment(s)
(cont’d)

T11

• XML signature (incl. defaults): T11 = 1

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

T12

• XML signature (incl. defaults): T12 = 0

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

T21

• XML signature (incl. defaults): T21 = 0

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

T22

• XML signature (incl. defaults): T22 = 1

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Offset

• XML signature (incl. defaults): Offset (X = 0, Y = 0, Unit*)

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

406

innovators for industry

XML tag BasePartDisplacement

XML signature
(incl. defaults)

BasePartDisplacement

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:ScanDeviceList>  <cfg:ScanDevice …> 
<cfg:BasePartDisplacement>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:BasePartDisplacement>

<cfg:Matrix>

<cfg:T11>1</cfg:T11>

<cfg:T12>0</cfg:T12>

<cfg:T21>0</cfg:T21>

<cfg:T22>1</cfg:T22>

</cfg:Matrix>

<cfg:Offset X=“0“ Y=“0“ />

</cfg:BasePartDisplacement>

Settable via
API?

slsc_cfg_set_part_displacement

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • BasePartDisplacement is only a container tag. No value(s), no attribute(s).

• For further information, see Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332.

• It is possible to compensate a misalignment of every workpiece located under this
particular ScanDevice.

• The positioning stage only executes a certain part (defined by the
Motion decomposition) of the overall contour. For this reason, such compensation
must be carried out completely by the scan device, which makes only minor corrections
possible.

• The BasePartDisplacement must be a previously known misalignment of each workpiece
with a particular scan system.

• slsc_cfg_set_part_displacement extends the base transformation (= all
BasePartDisplacement child tags) by multiplying the matrices and adding the offsets of
these two transformations.

Matrix

• XML signature (incl. defaults): Matrix

• No value(s), no attribute(s).

• Settable via API?: Not possible.

• Behavior on Module replay: No behavior as it is a container tag

Matrix T11 T12
T21 T22

=

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

407

innovators for industry

Comment(s)
(cont’d)

T11

• XML signature (incl. defaults): T11 = 1

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

T12

• XML signature (incl. defaults): T12 = 0

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

T21

• XML signature (incl. defaults): T21 = 0

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

T22

• XML signature (incl. defaults): T22 = 1

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Offset

• XML signature (incl. defaults): Offset (X = 0, Y = 0, Unit*)

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

408

innovators for industry

XML tag DefaultCorrectionFile

XML signature
(incl. defaults)

DefaultCorrectionFile* = 0

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:DefaultCorrectionFile>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:DefaultCorrectionFile>0</cfg:DefaultCorrectionFile>

Settable via
API?

slsc_ctrl_select_correction_file

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Determines which correction file from the syncAXIS-DLL-internal list of correction files
is going to be used within this syncAXIS control instance.

• Allowed entries: 0…3. Format: non-negative integer.

• The correction file in use can be switched by slsc_ctrl_select_correction_file.

• slsc_ctrl_refresh_correction_file reloads the correction file in use from the specified
path without changing its correction file index.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

409

innovators for industry

XML tag LaserConfig

XML signature
(incl. defaults)

LaserConfig

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserConfig>
</-- allowed/possible child tags see

LaserConfig in the XML structure overview -->
</cfg:LaserConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • LaserConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

XML tag LaserMode

XML signature
(incl. defaults)

LaserMode* = 0

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserMode>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserMode>5</cfg:LaserMode>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines the RTC6 laser mode of the syncAXIS control instance.

• Allowed entries: 0, 4…6. Format: non-negative integer.

• For more information on laser modes, refer to the RTC6 Manual.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

410

innovators for industry

XML tag LaserPortCfg

XML signature
(incl. defaults)

LaserPortCfg*

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserPortCfg>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserPortCfg>
<cfg:LaserOn>LaserOnSignal</cfg:LaserOn>
<cfg:Laser1>Laser1Signal</cfg:Laser1>
<cfg:Laser2>Laser2Signal</cfg:Laser2>

</cfg:LaserPortCfg>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • LaserPortCfg is only a container tag. No value(s), no attribute(s).

• The child tags of LaserPortCfg define the output ports of the various
laser control signals.

• By default, each laser control signal is mapped to the port of its name. In some cases,
they might need to be mapped differently.

• For more information on the laser control signals and output ports, refer to the
RTC6 Manual.

LaserOn

• XML signature (incl. defaults): LaserOn = LaserOnSignal

• Specifies the laser signal for output channel LASERON.

• Allowed entries:
– LaserOnSignal
– Laser1Signal
– Laser2Signal
– FirstPulseKillerSignal
Format: string.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

411

innovators for industry

Comment(s)
(cont’d)

Laser1

• XML signature (incl. defaults): Laser1 = Laser1Signal

• Specifies the laser signal for output channel LASER1.

• Allowed entries:
– LaserOnSignal
– Laser1Signal
– Laser2Signal
– FirstPulseKillerSignal
Format: string.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Laser2

• XML signature (incl. defaults): Laser2 = Laser2Signal

• Specifies the laser signal for output channel LASER2.

• Allowed entries:
– LaserOnSignal
– Laser1Signal
– Laser2Signal
– FirstPulseKillerSignal
Format: string.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

412

innovators for industry

XML tag LaserOutput

XML signature
(incl. defaults)

LaserOutput* (Unit*, HalfPeriod, PulseLength)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

HalfPeriod attribute value: double.

PulseLength attribute value: double.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserOutput …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserOutput Unit=“s“ HalfPeriod=“5e-6“ PulseLength=“1e-6“ />

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • LaserOutput defines (dependent on the LaserMode) the pulse train of the laser control
output during (the laser control signal) LASERON. The HalfPeriod attribute value is half
the time between the rising edges of two following laser control signal pulses. The
PulseLength attribute value is their length.

• The attribute values are ignored, if the corresponding channel (PulseLength, HalfPeriod,
SpotDistance) is entered as an “ActiveChannel“ for the “Automatic Laser Control“ (see
ActiveChannel).

• These values are outputted again in Mode “Manual Positioning“ and after
slsc_list_suppress_spotdistance_control.

• For more information on laser control, refer to the RTC6 Manual.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

413

innovators for industry

XML tag LaserStandby

XML signature
(incl. defaults)

LaserStandby* (Unit*, HalfPeriod, PulseLength)

’*’=optional; no ’*’=mandatory.

HalfPeriod attribute value: double.

PulseLength attribute value: double.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserStandby …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserStandby Unit=“s“ HalfPeriod=“0.00“ PulseLength=“0.0“ />

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • LaserStandby defines (dependent on the LaserMode) the pulse train of the laser control
output during the laser is off. The HalfPeriod attribute value is half the time between the
rising edges of two following laser control signal pulses. The PulseLength attribute value
is their length.

• For more information on laser control, refer to the RTC6 Manual.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

414

innovators for industry

XML tag QSwitchDelay

XML signature
(incl. defaults)

QSwitchDelay* = 0 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

QSwitchDelay value: double.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:QSwitchDelay …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:QSwitchDelay Unit=“s“>0.0</cfg:QSwitchDelay>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines the delay of the Q-Switch signal.

• For more information on the Q-Switch delay, refer to the RTC6 Manual.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

415

innovators for industry

XML tag FPulseKillerLength

XML signature
(incl. defaults)

FPulseKillerLength* = 0 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

FPulseKillerLength value: double.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:FPulseKillerLength …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:FPulseKillerLength Unit=“s“>0.0</cfg:FPulseKillerLength>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines the length of the FirstPulseKiller signal.

• For more information on the FirstPulseKiller signal, refer to the RTC6 Manual.

Version info syncAXIS_1_8.xsd

XML tag LaserControlFlags

XML signature
(incl. defaults)

LaserControlFlags*

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserControlFlags>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserControlFlags>
</-- allowed/possible child tags see

LaserControlFlags in the XML structure overview -->
</cfg:LaserControlFlags>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • LaserControlFlags is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

416

innovators for industry

XML tag LaserDisable

XML signature
(incl. defaults)

LaserDisable* = false

’*’=optional; no ’*’=mandatory.

LaserDisable value: boolean.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserControlFlags>  <cfg:LaserDisable>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserDisable>false</cfg:LaserDisable>

Settable via
API?

To set to false: slsc_ctrl_enable_laser.

To set to true: slsc_ctrl_disable_laser.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines whether the laser control signals are active or deactivated.

• For more information on enabling and disabling the laser control signals, refer to the
RTC6 Manual (set_laser_control, Bit #2).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

417

innovators for industry

XML tag PulseSwitchSetting

XML signature
(incl. defaults)

PulseSwitchSetting* = false

’*’=optional; no ’*’=mandatory.

PulseSwitchSetting value: boolean.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserControlFlags>  <cfg:PulseSwitchSetting>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:PulseSwitchSetting>false</cfg:PulseSwitchSetting>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines whether LASER1 signal and LASER2 signal are cut off after the LASERON phase
(that is, at the falling edge of the laser control signal LASERON).

• For more information on the Pulse Switch Setting, refer to the RTC6 Manual
(set_laser_control, Bit #0).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

418

innovators for industry

XML tag LaserSignalPhaseShift

XML signature
(incl. defaults)

LaserSignalPhaseShift* = false

’*’=optional; no ’*’=mandatory.

LaserSignalPhaseShift value: boolean.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserControlFlags> 
<cfg:LaserSignalPhaseShift>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserSignalPhaseShift>false</cfg:LaserSignalPhaseShift>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines whether the LASER1 and LASER2 signals are phase shifted (that is, both signals
are switched in CO2 mode (LaserMode = 0) and the LASER1 signal is shifted backwards
by 180° in YAG modes (LaserMode = 1,2,3 and 5)).

• For more information on the phase shift of the laser control signals, refer to the
RTC6 Manual (set_laser_control, Bit #1).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

419

innovators for industry

XML tag LaserOnSignalActiveLow

XML signature
(incl. defaults)

LaserOnSignalActiveLow* = false

’*’=optional; no ’*’=mandatory.

LaserOnSignalActiveLow value: boolean.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserControlFlags> 
<cfg:LaserOnSignalActiveLow>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserOnSignalActiveLow>false</cfg:LaserOnSignalActiveLow>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • true: LASERON, LASER1 and LASER2 are low active.
false: LASERON, LASER1 and LASER2 are high active.

• For more information on the signal level of the laser control signal LASERON, refer to
the RTC6 Manual (set_laser_control, Bit #3).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

420

innovators for industry

XML tag Laser1Laser2SignalActiveLow

XML signature
(incl. defaults)

Laser1Laser2SignalActiveLow* = false

’*’=optional; no ’*’=mandatory.

Laser1Laser2SignalActiveLow value: boolean.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserControlFlags> 
<cfg:Laser1Laser2SignalActiveLow>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:Laser1Laser2SignalActiveLow>false</cfg:Laser1Laser2SignalActiveLow>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • true: LASERON, LASER1 and LASER2 are low active.
false: LASERON, LASER1 and LASER2 are high active.

• For more information on the LASER1/LASER2 signal level, refer to the RTC6 Manual
(set_laser_control, Bit #4).

Version info syncAXIS_1_8.xsd

XML tag LaserPulsesAtRisingEdge

XML signature
(incl. defaults)

LaserPulsesAtRisingEdge* = false

’*’=optional; no ’*’=mandatory.

LaserPulsesAtRisingEdge value: boolean.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserControlFlags> 
<cfg:LaserPulsesAtRisingEdge>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserPulsesAtRisingEdge>false</cfg:LaserPulsesAtRisingEdge>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • LaserPulsesAtRisingEdge is currently reserved.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

421

innovators for industry

XML tag OutputSynchronizationOn

XML signature
(incl. defaults)

OutputSynchronizationOn* = false

’*’=optional; no ’*’=mandatory.

OutputSynchronizationOn value: boolean.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:LaserControlFlags> 
<cfg:OutputSynchronizationOn>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:OutputSynchronizationOn>false</cfg:OutputSynchronizationOn>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • OutputSynchronizationOn is currently reserved.

Version info syncAXIS_1_8.xsd

XML tag AutomaticLaserControl

XML signature
(incl. defaults)

AutomaticLaserControl

’*’=optional; kein ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:AutomaticLaserControl>
</-- allowed/possible child tags see

AutomaticLaserControl in the XML structure overview -->
</cfg:AutomaticLaserControl>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • AutomaticLaserControl is only a container tag. No value(s), no attribute(s).

• See also Chapter 2.9 ”About Automatically Controlling the Laser by syncAXIS control
(“Automatic Laser Control“)”, page 48.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

422

innovators for industry

XML tag ActiveChannel

XML signature
(incl. defaults)

ActiveChannel

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:ActiveChannel>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:ActiveChannel>
<cfg:Channel>AnalogOut1</cfg:Channel>

<cfg:Channel>SpotDistance</cfg:Channel>

</cfg:ActiveChannel>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • ActiveChannel is only a container tag. No value(s), no attribute(s).

• For the “Automatic Laser Control“, Shift, VelocityFactor and RadiusFactor can be specified
that can be set as disabled or enabled separately.

• Note that Ramps are only applied to ”ActiveChannel”.

• See also Chapter 2.9 ”About Automatically Controlling the Laser by syncAXIS control
(“Automatic Laser Control“)”, page 48.

Channel

• XML signature (incl. defaults): Channel[]*

• syncAXIS_1_8.xsd allows up to 2 Channel tags.

• Defines which control parameter is used for the “Automatic Laser Control“.

• Allowed entries:
– AnalogOut1
– AnalogOut2
– PulseLength
– HalfPeriod
– SpotDistance
Format: string.

• Settable via API?: Not possible.

• Behavior on Module replay: The parameter value of the replaying
syncAXIS control instance is applied. If it is differs from the one in the Module, then
[WARN] log file lines are generated. See also Section ”Behavior on Module replay”,
page 66.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

423

innovators for industry

XML tag AnalogOut1

XML signature
(incl. defaults)

AnalogOut1* (DefaultOutput, Format*)

’*’=optional; no ’*’=mandatory.

DefaultOutput attribute value: double.

Format attribute value: string.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:AnalogOut1 …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:AnalogOut1 DefaultOutput=“0.5“ Format=“Factor“>
</-- allowed/possible child tags see

AnalogOut1 in the XML structure overview -->
</cfg:AnalogOut1>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • AnalogOut1 is also a container tag. No value(s), 2 attributes: DefaultOutput, Format.

• Note: If “AnalogOut1” is not set as (one of the both) ”ActiveChannel” (see
ActiveChannel), then AnalogOut1 (child tag of DefaultOutputs) is outputted.

• To define, how AnalogOut1 should be adjusted based on radius and velocity: for this
purpose, with the child tags below AnalogOut1 characteristics for the RadiusFactor and
VelocityFactor can be defined.

• DefaultOutput attribute: Default output which is multiplied by factors, see Figure 17,
page 52.

• Format attribute: factor (fraction of the maximum analog voltage of 10 V).

• See Chapter 2.9 ”About Automatically Controlling the Laser by syncAXIS control
(“Automatic Laser Control“)”, page 48.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

424

innovators for industry

XML tag AnalogOut2

XML signature
(incl. defaults)

AnalogOut2* (DefaultOutput, Format*)

’*’=optional; no ’*’=mandatory.

DefaultOutput attribute value: double.

Format attribute value: string.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:AnalogOut2 …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:AnalogOut2 DefaultOutput=“0.5“ Format=“Factor“>
</-- allowed/possible child tags see

AnalogOut2 in the XML structure overview -->
</cfg:AnalogOut2>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • AnalogOut2 is also a container tag. No value(s), 2 attributes: DefaultOutput, Format.

• Note: If “AnalogOut2” is not set as (one of the both) ”ActiveChannel” (see
ActiveChannel), then AnalogOut2 (child tag of DefaultOutputs) is outputted.

• To define, how AnalogOut2 should be adjusted based on radius and velocity: for this
purpose, with the child tags below AnalogOut2 characteristics for the RadiusFactor and
VelocityFactor can be defined.

• DefaultOutput attribute: Default output which is multiplied by factors, see Figure 17,
page 52.

• Format attribute: factor (fraction of the maximum analog voltage of 10 V).

• See Chapter 2.9 ”About Automatically Controlling the Laser by syncAXIS control
(“Automatic Laser Control“)”, page 48.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

425

innovators for industry

XML tag PulseLength

XML signature
(incl. defaults)

PulseLength* (DefaultOutput, Unit*)

’*’=optional; no ’*’=mandatory.

DefaultOutput attribute value: double.

Unit attribute value: double.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:PulseLength …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:PulseLength DefaultOutput=“1e-5“ Unit=“s“>
</-- allowed/possible child tags see

PulseLength in the XML structure overview -->
</cfg:PulseLength>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • PulseLength is also a container tag. No value(s), 2 attributes: DefaultOutput, Unit.

• Note: If “PulseLength” is not set as (one of the both) ”ActiveChannel” (see
ActiveChannel), then the PulseLength attribute value of LaserOutput is outputted.

• To define, how the pulse length should be adjusted based on radius and velocity: for
this purpose, with the child tags below PulseLength characteristics for the RadiusFactor
and VelocityFactor can be defined.

• DefaultOutput attribute: Default output which is multiplied by factors, see Figure 17,
page 52.

• See Chapter 2.9 ”About Automatically Controlling the Laser by syncAXIS control
(“Automatic Laser Control“)”, page 48.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

426

innovators for industry

XML tag HalfPeriod

XML signature
(incl. defaults)

HalfPeriod* (DefaultOutput, Unit*)

’*’=optional; no ’*’=mandatory.

DefaultOutput attribute value: double.

Unit attribute value: double.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:HalfPeriod …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:HalfPeriod DefaultOutput=“1e-5“ Unit=“s“>
</-- allowed/possible child tags see

HalfPeriod in the XML structure overview -->
</cfg:HalfPeriod>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • HalfPeriod is also a container tag. No value(s), 2 attributes: DefaultOutput, Unit.

• Note: If “HalfPeriod” is not set as (one of the both) ”ActiveChannel” (see ActiveChannel),
then the PulseLength attribute value of LaserOutput is outputted.

• To define, how the HalfPeriod should be adjusted based on radius and velocity: for this
purpose, with the child tags below HalfPeriod characteristics for the RadiusFactor and
VelocityFactor can be defined.

• Note : Scaling the HalfPeriod based on the marking speed can lead to gaps in the
marking result, if this speed is close to 0.
It is recommended to use SpotDistance instead of HalfPeriod!

• DefaultOutput attribute: Default output which is multiplied by factors, see Figure 17,
page 52.

• See Chapter 2.9 ”About Automatically Controlling the Laser by syncAXIS control
(“Automatic Laser Control“)”, page 48.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

427

innovators for industry

XML tag SpotDistance

XML signature
(incl. defaults)

SpotDistance* (DefaultOutput, Unit*)

’*’=optional; no ’*’=mandatory.

DefaultOutput attribute value: double.

Unit attribute value: double.

XML path(s) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:SpotDistance …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:SpotDistance DefaultOutput=“0.005“ Unit=“mm“>
</-- allowed/possible child tags see

SpotDistance in the XML structure overview -->
</cfg:SpotDistance>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • SpotDistance is also a container tag. No value(s), 2 attributes: DefaultOutput, Unit.

• With the child tags below SpotDistance, characteristics for the RadiusFactor and
VelocityFactor are defined.

• The DefaultOutput attribute value is the laser spot spacing if no RadiusFactor or
VelocityFactor is applied.

• The DefaultOutput value is rounded internally to a 1/40 RTC6 position bit, that is,
(1/40) / Kxy [mm]. This means that for long lines a small rounding error can accumulate
during positioning. The max. error is
1/40 × (vector length × working field size) / (220 × SpotDistance).
With a working field edge length of 50 mm, a pulse distance of 50 µm and a line length
of 10 mm, a rounding error of max. 0.24 µm would result. If the default output value
is a multiple of 1/40 RTC6 position bit, there will be no rounding error.

• syncAXIS control makes use of the RTC6-“Spot Distance Control” feature. This allows a
precise positioning of laser pulses with 64 MHz resolution depending on the scanner
position (formerly, only HalfPeriod was possible on the RTC).

• RadiusFactor is not valid for the spot distance itself, but for the spot speed and thus for
the spot distance, which is scaled by reversing the factor (1/Factor).

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

428

innovators for industry

Comment(s)
(cont’d)

• SpotDistance is a special case, in which the velocity information is used although the
VelocityFactor might be deactivated to calculate the trigger timing for constant spot
distances. But VelocityFactor can still be used for fine tuning.

• For more information on the SpotDistance Channel, see Chapter 2.9.5 ”About the
“Contour-dependent speed calculation“”, page 60.

• See Chapter 2.9 ”About Automatically Controlling the Laser by syncAXIS control
(“Automatic Laser Control“)”, page 48.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

429

innovators for industry

XML tag Shift

XML signature
(incl. defaults)

Shift* = 0.0 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

XML path(s) (1) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:AnalogOut1>
 <cfg:Shift>

(2) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:AnalogOut2>
 <cfg:Shift>

(3) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:PulseLength>
 <cfg:Shift>

(4) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:HalfPeriod>
 <cfg:Shift>

(5) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl> 
<cfg:SpotDistance>  <cfg:Shift>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:Shift Unit=“s“>-1e-5</cfg:Shift>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • By Shift the output values of the “ActiveChannel” (see also Figure 17, page 52, Output
value) can be shifted in time.

• Shift value with negative sign: output is earlier than with 0.

• The following figure is Figure 21, page 56 plus the additional “Shift –0.001 s” curve
(dotted, black).

Y
X

s

mm

Shift –0.001 s
Shift 0 s

Output value of ActiveChannel @ <cfg:Shift Unit="s">–0.001</cfg:Shift>
Output value of ActiveChannel @ <cfg:Shift Unit="s">0</cfg:Shift>

0.1

0.2

0.3

0.4

0.5

0

0.5

1

1.5

2

2.5

0.005

Output value

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

430

innovators for industry

Comment(s)
(cont’d)

• Shift is provided to compensate for laser control delay times.

• For each channel, an individual time shift can be specified, that is, Shift is an allowed
child tag with AnalogOut1, AnalogOut2, PulseLength, HalfPeriod, SpotDistance (see XML path
1…5, above). This is made possible because, for example, analog signals need a longer
settling time than the laser pulse trigger.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

431

innovators for industry

XML tag RadiusFactor

XML signature
(incl. defaults)

RadiusFactor (Enabled, RadiusUnit*)

’*’=optional; no ’*’=mandatory.

RadiusUnit attribute value: string.

Enabled attribute value: boolean.

XML path(s) (1) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:AnalogOut1>
 <cfg:RadiusFactor>

(2) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:AnalogOut2>
 <cfg:RadiusFactor>

(3) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:PulseLength>
 <cfg:RadiusFactor>

(4) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:HalfPeriod>
 <cfg:RadiusFactor>

(5) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl> 
<cfg:SpotDistance>  <cfg:RadiusFactor>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:RadiusFactor RadiusUnit=“mm“ Enabled=“true“>
<cfg:DataPoint Radius=“0“ Factor=“0.0“ />
<cfg:DataPoint Radius=“15“ Factor=“1.0“ />
<cfg:DataPoint Radius=“27“ Factor=“2.0“ />

</cfg:RadiusFactor>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • RadiusFactor is also a container tag. No value(s), 2 attributes: RadiusUnit, Enabled.

• RadiusFactor is a scaling factor. It is multiplied by the output value of that specific
Channel dependent on the excursion radius of the laser beam. It can be used to
compensate for energy spread along the spot distortion due to the angle of impact on
the workpiece.

αα

High energy density
Low energy density

Deflection angleα

ACTIVEINACTIVE

Deflection angle-dependent energy density

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

432

innovators for industry

Comment(s)
(cont’d)

• For this type of automatic laser control setting, a characteristic of individual
interpolation points (=child tags DataPoint, see below) can be defined. The values are
linearly interpolated inbetween the interpolation points and constantly extrapolated
outside of them.

• For the RadiusFactor of each Channel (see XML path(s) above), a characteristics can be
defined separately even if they are Enabled=“false“.

• See Chapter 2.9 ”About Automatically Controlling the Laser by syncAXIS control
(“Automatic Laser Control“)”, page 48.

DataPoint

• XML signature (incl. defaults): DataPoint[]* (Radius, Factor)

• syncAXIS_1_8.xsd allows an unlimited number of DataPoint tags.

• An interpolation point of a characteristic.

• Format: double.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

433

innovators for industry

XML tag VelocityFactor

XML signature
(incl. defaults)

VelocityFactor (Enabled, VelocityUnit*)

’*’=optional; no ’*’=mandatory.

VelocityUnit attribute value: string.

Enabled attribute value: boolean.

XML path(s) (1) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:AnalogOut1>
 <cfg:VelocityFactor>

(2) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:AnalogOut2>
 <cfg:VelocityFactor>

(3) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:PulseLength>
 <cfg:VelocityFactor>

(4) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl>  <cfg:HalfPeriod>
 <cfg:VelocityFactor>

(5) <cfg:Configuration>  <cfg:LaserConfig>  <cfg:AutomaticLaserControl> 
<cfg:SpotDistance>  <cfg:VelocityFactor>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:VelocityFactor VelocityUnit=“mm“ Enabled=“true“>
<cfg:DataPoint Velocity=“0“ Factor=“0.0“/>
<cfg:DataPoint Velocity=“400“ Factor=“1.0“/>
<cfg:DataPoint Velocity=“4000“ Factor=“2.0“/>

</cfg:VelocityFactor>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • VelocityFactor is also a container tag. No value(s), 2 attributes: VelocityUnit, Enabled.

• VelocityFactor is a scaling factor. It is multiplied by the output value of that specific
Channel dependent on the spot velocity of the laser beam. It can be used to
compensate for larger energy deposition due to slower marking speed, for example, in
corners (without Sky Writing-like motions).

• For this type of automatic laser control setting, a characteristic of individual
interpolation points (=child tags DataPoint, see below) can be defined. The values are
linearly interpolated inbetween the interpolation points and constantly extrapolated
outside of them.

• For the VelocityFactor of each Channel (see XML path(s) above), a characteristic can be
defined separately even if they are Enabled=“false“.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

434

innovators for industry

Comment(s)
(cont’d)

• SpotDistance as a channel is a special case: the inverse of the characteristic is going to be
applied to the actual spot distance. The characteristic affects the velocity information
that is used for the “tuning”. Also note that using SpotDistance as an ”ActiveChannel”,
velocity information is used independently from the VelocityFactor to calculate the
trigger timing to achieve constant spot distances.

• See Chapter 2.9 ”About Automatically Controlling the Laser by syncAXIS control
(“Automatic Laser Control“)”, page 48.

DataPoint

• XML signature (incl. defaults): DataPoint[]* (Velocity, Factor)

• An interpolation point of a characteristic.

• Format: double.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

XML tag TrajectoryConfig

XML signature
(incl. defaults)

TrajectoryConfig

’*’=optional; kein ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:TrajectoryConfig>
</-- allowed/possible child tags see

TrajectoryConfig in the XML structure overview -->
</cfg:TrajectoryConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • TrajectoryConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

435

innovators for industry

XML tag MarkConfig

XML signature
(incl. defaults)

MarkConfig (VelocityUnit*)

’*’=optional; kein ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:MarkConfig>
</-- allowed/possible child tags see

MarkConfig in the XML structure overview -->
</cfg:MarkConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • MarkConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

436

innovators for industry

XML tag JumpSpeed

XML signature
(incl. defaults)

JumpSpeed = 400 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

JumpSpeed value: double.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:JumpSpeed …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:JumpSpeed Unit=“mm/s“>400</cfg:JumpSpeed>

Settable via
API?

slsc_cfg_set_jump_speed

slsc_list_set_jump_speed

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Non-Standard behavior: The parameter value of the replaying syncAXIS control instance is
not applied. If you want to vary the parameter value, then you need to record a new
Module each time for this.

Comment(s) • Meaning: see JumpSpeed.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

437

innovators for industry

XML tag MarkSpeed

XML signature
(incl. defaults)

MarkSpeed = 400 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

MarkSpeed value: double.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:MarkSpeed …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:MarkSpeed Unit=“mm/s“>400</cfg:MarkSpeed>

Settable via
API?

slsc_cfg_set_mark_speed

slsc_list_set_mark_speed

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Non-Standard behavior: The parameter value of the replaying syncAXIS control instance is
not applied. If you want to vary the parameter value, then you need to record a new
Module each time for this.

Comment(s) • Meaning: see MarkSpeed.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

438

innovators for industry

XML tag MinimalMarkSpeed

XML signature
(incl. defaults)

MinimalMarkSpeed = 0 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

MinimalMarkSpeed value: double.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:MinimalMarkSpeed …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:MinimalMarkSpeed Unit=“mm/s“>200</cfg:MinimalMarkSpeed>

Settable via
API?

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Non-Standard behavior: The parameter value of the replaying syncAXIS control instance is
not applied. If you want to vary the parameter value, then you need to record a new
Module each time for this.

Comment(s) • Meaning: see MinimalMarkSpeed.

Version info syncAXIS_1_8.xsd

XML tag LaserSwitchConfig

XML signature
(incl. defaults)

LaserSwitchConfig (Unit*)

’*’=optional; kein ’*’=mandatory.

Unit attribute value: double.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:LaserSwitchConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserSwitchConfig>
</-- allowed/possible child tags see

LaserSwitchConfig in the XML structure overview -->
</cfg:LaserSwitchConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • LaserSwitchConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

439

innovators for industry

XML tag LaserPreTriggerTime

XML signature
(incl. defaults)

LaserPreTriggerTime = 0 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

LaserPreTriggerTime value: double.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:LaserSwitchConfig> 
<cfg:LaserPreTriggerTime …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserPreTriggerTime Unit=“s“>1e-6</cfg:LaserPreTriggerTime>

Settable via
API?

slsc_cfg_set_trajectory_config

Behavior on
Module replay

The parameter value of the replaying syncAXIS control instance is applied. If the
parameter value of the replaying syncAXIS control instance is greater than the shortest
Jump Segment duration in the Modulee, then [WARN] log file lines are generated. The laser
signal is not triggered in advance for the Mark Segments that follow such Jump Segments.
See also Section ”Behavior on Module replay”, page 66.

Comment(s) • Meaning: see LaserPreTriggerTime.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

440

innovators for industry

XML tag LaserSwitchOffsetTime

XML signature
(incl. defaults)

LaserSwitchOffsetTime = -20e-6 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

LaserSwitchOffsetTime value: double.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:LaserSwitchConfig> 
<cfg:LaserSwitchOffsetTime …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserSwitchOffsetTime Unit=“s“>-20e-6</cfg:LaserSwitchOffsetTime>

Settable via
API?

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Meaning: see LaserPreTriggerTime.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

441

innovators for industry

XML tag LaserMinOffTime

XML signature
(incl. defaults)

LaserMinOffTime = 1e-6 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

LaserMinOffTime value: double.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:MarkConfig>  <cfg:LaserSwitchConfig> 
<cfg:LaserMinOffTime …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserMinOffTime Unit=“s“>1.5625e-8</cfg:LaserMinOffTime>

Settable via
API?

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Non-Standard behavior: The parameter value of the replaying syncAXIS control instance is
not applied. If you want to vary the parameter value, then you need to record a new
Module each time for this.

Comment(s) • Meaning: see LaserMinOffTime.

• The smallest allowed value is:
1/64 µs

Version info syncAXIS_1_8.xsd

XML tag GeometryConfig

XML signature
(incl. defaults)

GeometryConfig

’*’=optional; kein ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:GeometryConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:GeometryConfig>
</-- allowed/possible child tags see

GeometryConfig in the XML structure overview -->
</cfg:GeometryConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • GeometryConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

442

innovators for industry

XML tag MaxBlendRadius

XML signature
(incl. defaults)

MaxBlendRadius = 1.0 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

MaxBlendRadius value: double.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:GeometryConfig>  <cfg:MaxBlendRadius …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:MaxBlendRadius Unit=“mm“>1.0</cfg:MaxBlendRadius>

Settable via
API?

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Non-Standard behavior: The parameter value of the replaying syncAXIS control instance is
not applied. If you want to vary the parameter value, then you need to record a new
Module each time for this.

Comment(s) • Meaning: see also MaxBlendRadius. Defines the distance from corners starting from which
the blending curve might start. Depending on the blending settings, this distance
might be smaller. See also Figure 39, page 292.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

443

innovators for industry

XML tag ApproxBlendLimit

XML signature
(incl. defaults)

ApproxBlendLimit = 0.5 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

ApproxBlendLimit value: double.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:GeometryConfig> 
<cfg:ApproxBlendLimit …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:ApproxBlendLimit Unit=“mm“>0.5</cfg:ApproxBlendLimit>

Settable via
API?

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Non-Standard behavior: The parameter value of the replaying syncAXIS control instance is
not applied. If you want to vary the parameter value, then you need to record a new
Module each time for this.

Comment(s) • Meaning: see also ApproxBlendLimit. Defines the distance from corners the
blending curves must reach at least. Depending on the blending settings, this distance
might be smaller. See also Figure 39, page 292.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

444

innovators for industry

XML tag BlendMode

XML signature
(incl. defaults)

BlendMode = MinimalBlending

’*’=optional; no ’*’=mandatory.

BlendMode value: string.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:GeometryConfig>  <cfg:BlendMode>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:BlendMode>VariableBlending</cfg:BlendMode>

Settable via
API?

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Non-Standard behavior: The parameter value of the replaying syncAXIS control instance is
not applied. If you want to vary the parameter value, then you need to record a new
Module each time for this.

Comment(s) • Defines the blend mode of the syncAXIS control instance, see also enum
slsc_BlendModes.

• Allowed entries:
– Deactivated

No blending. A Sky Writing-like motion is going to be added.
– VariableBlending

The blending curves are calculated to be as fast as possible while trying to stick to the
MaxBlendRadius and ApproxBlendLimit constraint.

– MinimalBlending
The blending curves are as close as possible to the defined contour while maintaining
the MinimalMarkSpeed.

– FixedBlending
Deprecated.

• If a blending cannot be performed sticking to the desired restrictions, a Sky Writing-like
motion is going to be added (as with ”Deactivated”). To detect its number, the
enumeration constant slsc_JobCharacteristic_InsertedSkywritings is available.

• See also Figure 39, page 292.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

445

innovators for industry

XML tag AutoCyclicGeometry (deprecated)

XML signature
(incl. defaults)

AutoCyclicGeometry = false

’*’=optional; no ’*’=mandatory.

AutoCyclicGeometry value: boolean.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:GeometryConfig> 
<cfg:AutoCyclicGeometry>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:AutoCyclicGeometry>false</cfg:AutoCyclicGeometry>

Settable via
API?

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Non-Standard behavior: The parameter value of the replaying syncAXIS control instance is
not applied. If you want to vary the parameter value, then you need to record a new
Module each time for this.

Comment(s) • Deprecated. Recommended setting: false. Meaning: see also ApproxBlendLimit.
AutoCyclicGeometry was a setting for Splines. Closed contours could been marked with
consistent blend settings, even for the starting/end corner, that would normally not
have been affected (transition from jump-to-mark and mark-to-jump).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

446

innovators for industry

XML tag SplineConversionLengthLimit (deprecated)

XML signature
(incl. defaults)

SplineConversionLengthLimit = 0.5 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

SplineConversionLengthLimit value: double.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:GeometryConfig> 
<cfg:SplineConversionLengthLimit …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:SplineConversionLengthLimit Unit=“mm“>0.5</cfg:SplineConversionLengthLimit>

Settable via
API?

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Non-Standard behavior: The parameter value of the replaying syncAXIS control instance is
not applied. If you want to vary the parameter value, then you need to record a new
Module each time for this.

Comment(s) • Deprecated. Recommended setting: leave default value as it is. Meaning: see also
SplineConversionLengthLimit. SplineConversionLengthLimit has defined the maximum length
for vectors to be turned into splines. Vectors longer than the SplineConversionLengthLimit-
value had not been added to the spline and blending curves or Sky Writing-like motions
have been carried out in between.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

447

innovators for industry

XML tag SplineMode (deprecated)

XML signature
(incl. defaults)

SplineMode = Deactivated

’*’=optional; no ’*’=mandatory.

SplineConversionLengthLimit value: string.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:GeometryConfig>  <cfg:SplineMode>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:SplineMode>Deactivated</cfg:SplineMode>

Settable via
API?

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Non-Standard behavior: The parameter value of the replaying syncAXIS control instance is
not applied. If you want to vary the parameter value, then you need to record a new
Module each time for this.

Comment(s) • Deprecated. Recommended setting: Deactivated. Has defined the spline mode of the
syncAXIS control instance, see also enum slsc_SplineModes.

• Allowed entry:
– Deactivated

Recommended. No splines.
– Interpolating

Polynomial paths have been interpolated between the marking points.
– Approximating

Polynomial paths have been approximated between the marking points.

• ”Approximating” has reduced the dynamic load whereas ”Interpolating” was more
accurate.

• See also Figure 44, page 319.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

448

innovators for industry

XML tag VectorResolution

XML signature
(incl. defaults)

VectorResolution = 0.02 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

VectorResolution value: double.

XML path(s) <cfg:Configuration>  <cfg:TrajectoryConfig>  <cfg:VectorResolution …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:VectorResolution Unit=“mm“>0.02</cfg:VectorResolution>

Settable via
API?

slsc_cfg_set_trajectory_config

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Meaning: see also VectorResolution. Defines the “system resolution” – vectors shorter
than that resolution are combined with the previous vector, see Figure 40, page 292.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

449

innovators for industry

XML tag StageConfig

XML signature
(incl. defaults)

StageConfig

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:StageConfig>
</-- allowed/possible child tags see

StageConfig in the XML structure overview -->
</cfg:StageConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • StageConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

450

innovators for industry

XML tag DelayShift

XML signature
(incl. defaults)

DelayShift* = 0.0 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

DelayShift value: double.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:DelayShift …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:DelayShift Unit=“s“>0.0</cfg:DelayShift>

Settable via
API?

Not possible.

Behavior on
Module replay

Same as <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:Delay …>:
The parameter value of the replaying syncAXIS control instance is applied. If the calculated
(from <cfg:Configuration>  <cfg:StageConfig>  <cfg:CTIME …> and <cfg:Configuration> 

<cfg:StageConfig>  <cfg:DelayShift …>) positioning stage delay differs from the one in the
Module, then [WARN] log file lines are generated. “SIGNAL” functions included in the
Module that have a negative delay are not executed, if the absolute value of the delay is
greater than either largest scan device delay (<cfg:Configuration>  <cfg:ScanDeviceConfig> 

<cfg:Delay …>) or calculated positioning stage delay. See also Section ”Behavior on Module
replay”, page 66.

Comment(s) • By the DelayShift value, the time synchronization of scan device and positioning stage
can be optimized.

• The default value of 0 should be correct for all XL SCAN systems. Necessary data is
automatically read out and applied, see CTIME.

• If it turns out that the time synchronization needs to be improved, then contact
SCANLAB.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

451

innovators for industry

XML tag CTIME

XML signature
(incl. defaults)

CTIME* = -1 (Unit*)

’*’=optional; no ’*’=mandatory.

Unit attribute value: double.

CTIME value: double.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:CTIME …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:CTIME Unit=“ms“>-1.0</cfg:CTIME>

Settable via
API?

Not possible.

Behavior on
Module replay

Same as <cfg:Configuration>  <cfg:ScanDeviceConfig>  <cfg:Delay …>: The parameter value
of the replaying syncAXIS control instance is applied. If the calculated (from
<cfg:Configuration>  <cfg:StageConfig>  <cfg:CTIME …> and <cfg:Configuration> 

<cfg:StageConfig>  <cfg:DelayShift …>) positioning stage delay differs from the one in the
Module, then [WARN] log file lines are generated. “SIGNAL” functions included in the
Module that have a negative delay are not executed, if the absolute value of the delay is
greater than either largest scan device delay (<cfg:Configuration>  <cfg:ScanDeviceConfig> 

<cfg:Delay …>) or calculated positioning stage delay. See also Section ”Behavior on Module
replay”, page 66.

Comment(s) • In syncAXIS control  V1.2.6, the positioning stage delay value needed to be entered
based on the cycle time of the ACS protocol (ACS-Cycle Time, “CTIME”) under
<cfg:Configuration>  <cfg:StageConfig>  <cfg:Delay …>.
In syncAXIS control  V1.3.0, the <cfg:Delay …> tag is no longer available. Instead, with
CTIME = –1, the CTIME is automatically read out from the ACS Motion Controller and a
corresponding positioning stage delay value is automatically set.

• A CTIME value directly entered here is used (no read out from the
ACS Motion Controller). A corresponding positioning stage delay value is set automat-
ically.

• If a positioning stage delay value = 0 is desired, set <cfg:CTIME Unit=“ms“>0</cfg:CTIME>.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

452

innovators for industry

XML tag MonitoringLevel

XML signature
(incl. defaults)

MonitoringLevel = Jerk

’*’=optional; no ’*’=mandatory.

MonitoringLevel value: string.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:MonitoringLevel>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:MonitoringLevel>Acceleration</cfg:MonitoringLevel>

Settable via
API?

slsc_cfg_set_stage_dynamic_monitoring_level

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Defines a criterion for which the positioning stages are to be monitored.

• The criterion does not apply to the scan devices – the dedicated tag MonitoringLevel, see
page 397, exists for these.
The description there applies analogously.

• Exceedances automatically trigger the reaction defined in DynamicViolationReaction.

• Allowed entries:
– Deactivated
– Position
– Velocity
– Acceleration
– Jerk

• syncAXIS control uses to monitor working field and dynamics as:
– scan device dynamic limits the DynamicLimits values, page 388
– scan device working field limits the FieldLimits values, page 395
– scan device monitoring criterion the MonitoringLevel value, page 397
– positioning stage dynamic limits the FieldLimits values, page 454
– positioning stage working field limits the DynamicLimits values, page 456
– positioning stage monitoring criterion the MonitoringLevel values, page 452
– reaction on exceedances the DynamicViolationReaction values, page 365

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

453

innovators for industry

XML tag StageList

XML signature
(incl. defaults)

StageList*

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:StageList>
</-- allowed/possible child tags see

StageList in the XML structure overview -->
</cfg:StageList>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • StageList is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

XML tag Stage

XML signature
(incl. defaults)

Stage[] (Name)

’*’=optional; no ’*’=mandatory.

Name attribute value: string.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>  <cfg:Stage …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:Stage Name=“Stage1“>
</-- allowed/possible child tags see

Stage in the XML structure overview -->
</cfg:Stage>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Stage is also a container tag. No value(s), 1 attribute: Name.

• syncAXIS_1_8.xsd allows up to 4 Stage tags.

• Allowed entries with Name, see enum slsc_Stage: ”Stage1”, ”Stage2”, ”Stage3”, ”Stage4”.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

454

innovators for industry

XML tag FieldLimits

XML signature
(incl. defaults)

FieldLimits

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>  <cfg:Stage>  <cfg:FieldLimits>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:FieldLimits>
<cfg:XDirection Unit=“mm“ Max=“150“ Min=“-150“ />
<cfg:YDirection Unit=“mm“ Max=“150“ Min=“-150“ />

</cfg:FieldLimits>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • FieldLimits is only a container tag. No value(s), no attribute(s).

• The FieldLimits child tags XDirection and YDirection serve to specify the working field
limits of the intended positioning stage type.

• syncAXIS control uses to monitor working field and dynamics as:
– scan device dynamic limits the DynamicLimits values, page 388
– scan device working field limits the FieldLimits values, page 395
– scan device monitoring criterion the MonitoringLevel value, page 397
– positioning stage dynamic limits the FieldLimits values, page 454
– positioning stage working field limits the DynamicLimits values, page 456
– positioning stage monitoring criterion the MonitoringLevel values, page 452
– reaction on exceedances the DynamicViolationReaction values, page 365

• syncAXIS control does not use the values at XDirection and YDirection to plan trajec-
tories!

• syncAXIS Viewer uses the values for values at XDirection and YDirection to visualize the
positioning stage working field and to indicate limit value exceedances.

• The values at XDirection and YDirection do not need to correspond the usable
working field. Lower field boundaries can also be set, if a smaller part of the
working field is to be monitored. Higher field boundaries should not be set.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

455

innovators for industry

Comment(s)
(cont’d)

XDirection

• XML signature (incl. defaults): XDirection (Unit*, Max, Min)

• Format: double.

• Settable via API?: slsc_cfg_set_field_limits_stage

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

YDirection

• XML signature (incl. defaults): YDirection (Unit*, Max, Min)

• Format: double.

• Settable via API?: slsc_cfg_set_field_limits_stage

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

ZDirection

• This parameter is currently reserved!

• XML signature (incl. defaults): ZDirection* (Unit*, Max, Min)

• Max, Min: double.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

456

innovators for industry

XML tag DynamicLimits

XML signature
(incl. defaults)

DynamicLimits

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>  <cfg:Stage> 
<cfg:DynamicLimits>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:DynamicLimits>
<cfg:Velocity Unit=“mm/s“>1000</cfg:Velocity>
<cfg:Acceleration Unit=“mm/s^2“>10000</cfg:Acceleration>
<cfg:Jerk Unit=“mm/s^3“>100000</cfg:Jerk>

</cfg:DynamicLimits>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • DynamicLimits is only a container tag. No value(s), no attribute(s).

• The DynamicLimits child tags Velocity, Acceleration and Jerk serve to specify the dynamic
limits of the intended positioning stage type.

• syncAXIS control uses to monitor working field and dynamics as:
– scan device dynamic limits the DynamicLimits values, page 388
– scan device working field limits the FieldLimits values, page 395
– scan device monitoring criterion the MonitoringLevel value, page 397
– positioning stage dynamic limits the FieldLimits values, page 454
– positioning stage working field limits the DynamicLimits values, page 456
– positioning stage monitoring criterion the MonitoringLevel values, page 452
– reaction on exceedances the DynamicViolationReaction values, page 365

• syncAXIS control does not use the values at Velocity, Acceleration and Jerk to plan
trajectories! For this purpose, CalculationDynamics is used.

• syncAXIS Viewer uses the values at Velocity, Acceleration and Jerk to indicate dynamic
limit value exceedances.

• The values at Velocity, Acceleration and Jerk to do not need to correspond the usable
working field. Lower dynamic limits can also be set if the dynamic limits are to be
monitored more strictly.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

457

innovators for industry

Comment(s)
(cont’d)

Velocity

• XML signature (incl. defaults): Velocity = 1000.0 (Unit*)

• Format: double.

• Settable via API?: slsc_cfg_set_dynamic_limits_stage

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Acceleration

• XML signature (incl. defaults): Acceleration = 10000.0 (Unit*)

• Format: double.

• Settable via API?: slsc_cfg_set_dynamic_limits_stage

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Jerk

• XML signature (incl. defaults): Jerk = 100000.0 (Unit*)

• Format: double.

• Settable via API?: slsc_cfg_set_dynamic_limits_stage

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

458

innovators for industry

XML tag CalculationDynamics

XML signature
(incl. defaults)

CalculationDynamics

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>  <cfg:Stage> 
<cfg:CalculationDynamics>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:CalculationDynamics>
<cfg:Velocity Unit=“mm/s“>1000</cfg:Velocity>
<cfg:Acceleration Unit=“mm/s^2“>10000</cfg:Acceleration>
<cfg:Jerk Unit=“mm/s^3“>100000</cfg:Jerk>

</cfg:CalculationDynamics>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • CalculationDynamics is only a container tag. No value(s), no attribute(s).

• The CalculationDynamics child tags Velocity, Acceleration and Jerk serve to specify the
dynamic capabilities (“dynamic limits“) of the intended positioning stage type, which
are used to calculate the positioning stage motion

• Caution! syncAXIS control uses the values at Velocity, Acceleration and Jerk to plan
trajectories for the Operation mode “StageOnly” as well as for the end motion at Job
ends. Make sure that the entered values are correct.
In “ScannerAndStage” mode, these values:

– are not taken into account for marking motions (the Motion decomposition is per-
formed based on the FilterBandwidth value)

– are taken into account (for the end motion) at Job ends

• The following applies to Operation mode “StageOnly”: If a higher marking speed or
jump speed is specified (via syncAXISConfig.xml or function call), then these are automat-
ically reduced to the Velocity value. In this case, an [ERROR] log file line is generated,
see [ERROR] log file lines.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

459

innovators for industry

Comment(s)
(cont’d)

Velocity

• XML signature (incl. defaults): Velocity = 1000.0 (Unit*)

• Format: double

• Settable via API?: slsc_cfg_set_calculation_dynamics_stage

• Velocity is the velocity of the positioning stage (“dynamic limit”)

• Behavior on Module replay: The Module is rejected, if the replaying
syncAXIS control instance is in Operation mode StageOnly and the Velocity value is
smaller than MarkSpeed value or JumpSpeed value in the Module. In this case, you need to
record a new Module with correspondingly different parameter value. See also Section
”Behavior on Module replay”, page 66.

Acceleration

• XML signature (incl. defaults): Acceleration = 10000.0 (Unit*)

• Format: double

• Settable via API?: slsc_cfg_set_calculation_dynamics_stage

• Acceleration is the acceleration of the positioning stage (“dynamic limit”)

• Behavior on Module replay: The Module is rejected, if the replaying
syncAXIS control instance is in Operation mode StageOnly and the Acceleration value is
smaller than in the Module. In this case, you need to record a new Module with corre-
spondingly different parameter value. See also Section ”Behavior on Module replay”,
page 66.

Jerk

• XML signature (incl. defaults): Jerk = 100000.0 (Unit*)

• Format: double

• Settable via API?: slsc_cfg_set_calculation_dynamics_stage

• Jerk is the jerk of the positioning stage (“dynamic limit”)

• Behavior on Module replay: The Module is rejected, if the replaying
syncAXIS control instance is in Operation mode StageOnly and the Jerk value is smaller
than in the Module. In this case, you need to record a new Module with correspond-
ingly different parameter value. See also Section ”Behavior on Module replay”,
page 66.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

460

innovators for industry

XML tag Alignment

XML signature
(incl. defaults)

Alignment

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>  <cfg:Stage …>  <cfg:Alignment>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:Alignment>

<cfg:Matrix>

<cfg:T11>1</cfg:T11>

<cfg:T12>0</cfg:T12>

<cfg:T21>0</cfg:T21>

<cfg:T22>1</cfg:T22>

</cfg:Matrix>

<cfg:Offset X=“0“ Y=“0“ />

</cfg:Alignment>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • Alignment is only a container tag. No value(s), no attribute(s).

• The Alignment-child tags Matrix and Offset are available to compensate for assembly
errors in Multi-Head systems.

• The positions sent to a respective positioning stage have been transformed in a way
that positioning stage coordinate system and reference system (for example, the
scan head coordinate system) do match.

• Alignment is applied to the Trajectory planning! (Alignment occurs not on the RTC6!)

• A simulation file does not contain alignment transformation (simulation files show the
marking not taking into account any miscalibration).

• The matrix must be invertible, but does not need to be normed.

• For further information, see Chapter 8.3 ”About Transformations in
syncAXIS control V1.2.4 and Higher”, page 332.

Matrix

• XML signature (incl. defaults): Matrix

• No value(s), no attribute(s).

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Matrix T11 T12
T21 T22

=

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

461

innovators for industry

Comment(s)
(cont’d)

T11

• XML signature (incl. defaults): T11 = 1

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

T12

• XML signature (incl. defaults): T12 = 0

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

T21

• XML signature (incl. defaults): T21 = 0

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

T22

• XML signature (incl. defaults): T22 = 1

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Offset

• XML signature (incl. defaults): Offset (X = 0, Y = 0, Unit*)

• Format: double.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

462

innovators for industry

XML tag StageAxisX

XML signature
(incl. defaults)

StageAxisX* = 0

’*’=optional; no ’*’=mandatory.

StageAxisX value: non-negative integer.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>  <cfg:Stage …>  <cfg:StageAxisX>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:StageAxisX>0</cfg:StageAxisX>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • For positioning stage setups where ACS x axis index  0.

Version info syncAXIS_1_8.xsd

XML tag StageAxisY

XML signature
(incl. defaults)

StageAxisY* = 1

’*’=optional; no ’*’=mandatory.

StageAxisY value: non-negative integer.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>  <cfg:Stage …>  <cfg:StageAxisY>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:StageAxisY>1</cfg:StageAxisY>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • For positioning stage setups where ACS x axis index  1.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

463

innovators for industry

XML tag SlecEtherCATNodeID

XML signature
(incl. defaults)

SlecEtherCATNodeID* = 0

’*’=optional; no ’*’=mandatory.

SlecEtherCATNodeID value: non-negative integer.

XML path(s) <cfg:Configuration>  <cfg:StageConfig>  <cfg:StageList>  <cfg:Stage …> 
<cfg:SlecEtherCATNodeID>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:SlecEtherCATNodeID>1</cfg:SlecEtherCATNodeID>

Settable via
API?

Not possible.

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • Position of the SLEC in the EtherCAT network.

• For positioning stage setups where SLEC-ID  0.

Version info syncAXIS_1_8.xsd

XML tag IOConfig

XML signature
(incl. defaults)

IOConfig*

’*’=optional; kein ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:IOConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:IOConfig>
</-- allowed/possible child tags see

IOConfig in the XML structure overview -->
</cfg:IOConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • IOConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

464

innovators for industry

XML tag DefaultOutputs

XML signature
(incl. defaults)

DefaultOutputs*

’*’=optional; no ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:IOConfig>  <cfg:DefaultOutputs>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:DefaultOutputs>

<cfg:LaserPinOut Format=“Bitpattern“ Value=“1“ />

<cfg:AnalogOut1 Format=“Factor“ Value=“0.5“ />

<cfg:AnalogOut2 Format=“Factor“ Value=“0.5“ />

</cfg:DefaultOutputs>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • DefaultOutputs is only a container tag. No value(s), no attribute(s).

• After RTC6 startup, all analog ports are low (0 V) and the digital ports are in the (high
impedance) tristate mode.

• Provided the respective port is not defined as an “ActiveChannel” (see Channel): the
specified values are output as of the first Job execution start and continue until they are
changed by an API function or, the LaserShutdownSequence is executed.

LaserPinOut

• XML signature (incl. defaults): LaserPinOut* (Format*, Value)

• Format: string.

• Allowed entries: 0, 1, 2, 3.

• In case “Automatic Laser Control“ is not used, this value is output at the respective port
during Job execution.

• Settable via API?: slsc_list_write_analog_x, slsc_list_write_digital_out

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

465

innovators for industry

Comment(s)
(cont’d)

AnalogOut1

• XML signature (incl. defaults): AnalogOut1* (Format*, Value)

• Format: double.

• Allowed entries: 0…1.

• The factor for the analog output applies with respect to the maximum value of 10 V.
In case “Automatic Laser Control“ is not used, this value is output at the respective port
during Job execution.

• Settable via API?: slsc_list_write_analog_x, slsc_list_write_digital_out

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

AnalogOut2

• XML signature (incl. defaults): AnalogOut2* (Format*, Value)

• Format: double.

• Allowed entries: 0…1.

• The factor for the analog output applies with respect to the maximum value of 10 V.
In case “Automatic Laser Control“ is not used, this value is output at the respective port
during Job execution.

• Settable via API?: slsc_list_write_analog_x, slsc_list_write_digital_out

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

466

innovators for industry

XML tag LaserInitSequence

XML signature
(incl. defaults)

LaserInitSequence{}*

’*’=optional; no ’*’=mandatory.

’{}’=here: any number of child tags are allowed (“sequence“).

XML path(s) <cfg:Configuration>  <cfg:IOConfig>  <cfg:LaserInitSequence>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserInitSequence>

<cfg:Delay>0</cfg:Delay>

<cfg:SetLaserPinOut Format=“Bitpattern“ Value=“1“ />

<cfg:SetAnalogOut1 Format=“Factor“ Value=“0.5“ />

<cfg:SetAnalogOut2 Format=“Factor“ Value=“1.0“ />

<cfg:SetExt1DigitalOut Value=“1“ />

</cfg:LaserInitSequence>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • LaserInitSequence is only a container tag. No value(s), no attribute(s).

• The individual child tags of LaserInitSequence are processed sequentially:
– During initialization of a syncAXIS control instance
– During positioning stage acquisition due to slsc_cfg_acquire_stage (deprecated)
This can be used to initialize the laser (for example, to set the Global Enable of the laser)
and peripherals.

• syncAXIS_1_8.xsd allows that LaserInitSequence child tags may occur several times.

• After RTC6 startup, all analog ports are low (0 V) and the digital ports are in the (high
impedance) tristate mode.

• The most recently set values are output until:
– The first Job execution starts
– An API function call overwrites them

Delay

• XML signature (incl. defaults): Delay (Unit*)

• Format: non-negative double.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

467

innovators for industry

Comment(s)
(cont’d)

SetLaserPinOut

• XML signature (incl. defaults): SetLaserPinOut (Format*, Value)

• Format: string.

• Allowed entries: 0, 1, 2, 3.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

SetAnalogOut1

• XML signature (incl. defaults): SetAnalogOut1 (Format*, Value)

• Format: double.

• Allowed entries: 0…1.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

SetAnalogOut2

• XML signature (incl. defaults): SetAnalogOut1 (Format*, Value)

• Format: double.

• Allowed entries: 0…1.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

SetExt1DigitalOut

• XML signature (incl. defaults): SetExt1DigitalOut (Format*, Value, Mask*)

• Format: double.

• Allowed entries: 0…65535 (decimal) or 0x0000…0xFFFF (hex).

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

468

innovators for industry

XML tag LaserShutdownSequence

XML signature
(incl. defaults)

LaserShutdownSequence{}*

’*’=optional; no ’*’=mandatory.

’{}’=here: any number of child tags are allowed (“sequence“).

XML path(s) <cfg:Configuration>  <cfg:IOConfig>  <cfg:LaserShutdownSequence>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:LaserShutdownSequence>

<cfg:Delay>0</cfg:Delay>

<cfg:SetLaserPinOut Format=“Bitpattern“ Value=“0“ />

<cfg:SetAnalogOut2 Format=“Factor“ Value=“0.0“ />

<cfg:SetAnalogOut1 Format=“Factor“ Value=“0.0“ />

<cfg:SetExt1DigitalOut Value=“0“ />

</cfg:LaserShutdownSequence>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • LaserShutdownSequence is only a container tag. No value(s), no attribute(s).

• The individual child tags are processed sequentially:
– During syncAXIS control instance destruction
– During positioning stage release due to slsc_cfg_release_stage (deprecated)
This can be used to shut-down the laser (for example, to switch off the Global Enable
of the laser) and peripherals.

• syncAXIS_1_8.xsd allows that LaserShutdownSequence child tags may occur several times.

• After RTC6 startup, all analog ports are low (0 V) and the digital ports are in the (high
impedance) tristate mode.

Delay

• XML signature (incl. defaults): Delay (Unit*)

• Format: non-negative double.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

469

innovators for industry

Comment(s)
(cont’d)

SetLaserPinOut

• XML signature (incl. defaults): SetLaserPinOut (Format*, Value)

• Format: string.

• Allowed entries: 0, 1, 2, 3.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

SetAnalogOut1

• XML signature (incl. defaults): SetAnalogOut1 (Format*, Value)

• Format: double.

• Allowed entries: 0…1.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

SetAnalogOut2

• XML signature (incl. defaults): SetAnalogOut1 (Format*, Value)

• Format: double.

• Allowed entries: 0…1.

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

SetExt1DigitalOut

• XML signature (incl. defaults): SetExt1DigitalOut (Format*, Value, Mask*)

• Format: double.

• Allowed entries: 0…65535 (decimal) or 0x0000…0xFFFF (hex).

• Settable via API?: Not possible.

• Behavior on Module replay: Standard behavior: The parameter value of the replaying
syncAXIS control instance is applied. If you want to vary the parameter value, then you
do not need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

470

innovators for industry

XML tag MotionDecompositionConfig

XML signature
(incl. defaults)

MotionDecompositionConfig

’*’=optional; kein ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:MotionDecompositionConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:MotionDecompositionConfig>
</-- allowed/possible child tags see

MotionDecompositionConfig in the XML structure overview -->
</cfg:MotionDecompositionConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • MotionDecompositionConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

471

innovators for industry

XML tag FilterBandwidth

XML signature
(incl. defaults)

FilterBandwidth = 2 (Unit*)

’*’=optional; no ’*’=mandatory.

FilterBandwidth value: double.

XML path(s) <cfg:Configuration>  <cfg:MotionDecompositionConfig>  <cfg:FilterBandwidth>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:FilterBandwidth>2</cfg:FilterBandwidth>

Settable via
API?

slsc_cfg_set_bandwidth

Behavior on
Module replay

Standard behavior: The parameter value of the replaying syncAXIS control instance is
applied. If you want to vary the parameter value, then you do not need to record a new
Module each time for this.

Comment(s) • slsc_cfg_initialize_from_file fails, if the FilterBandwidth value is smaller than 0.23.
Then, the return value indicates that Bit #14 is set (XmlLoadError).

• The FilterBandwidth value is the very parameter that determines the decomposition of
scan device and positioning stage motion. The larger the FilterBandwidth value, the
more dynamic load is assigned to the positioning stage. The lower, the more load to
the scan device. Dependent on the process constraints, users might desire
– minimum positioning stage load in order to reduce inaccuracies due to positioning

stage vibrations,
– minimal scanner working field to reduce inaccuracies due to scanner calibration inac-

curacies, or
– minimum process time by a maximum utilization of the scanners and positioning

stage dynamic capabilities.
The optimal FilterBandwidth value strongly depends on the contour. It can be determined
by checking the dynamic load (the Trajectory planning has calculated) by using the
simulation mode, see Chapter 2.6 ”About Optimizing syncAXIS control-based User
Programs”, page 36.

• The dynamic and position capabilities of scanner and positioning stage are not taken
into account for the Motion decomposition (motion assignment). This is another
reason why you always must always simulate every Job in advance before executing it
on hardware for the first time. This is the only way you can ensure that no limits are
violated. See Chapter 2.2 ”About the SAFE Use of syncAXIS control – General
Approach”, page 18.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

472

innovators for industry

XML tag HeuristicConfig

XML signature
(incl. defaults)

HeuristicConfig*

’*’=optional; kein ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:MotionDecompositionConfig>  <cfg:HeuristicConfig>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:HeuristicConfig>
</-- allowed/possible child tags see

HeuristicConfig in the XML structure overview -->
</cfg:HeuristicConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • HeuristicConfig is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

XML tag DynamicReductionFunctions

XML signature
(incl. defaults)

DynamicReductionFunctions*

’*’=optional; kein ’*’=mandatory.

XML path(s) <cfg:Configuration>  <cfg:MotionDecompositionConfig>  <cfg:HeuristicConfig> 
<cfg:DynamicReductionFunctions>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:HeuristicConfig>
</-- allowed/possible child tags see

DynamicReductionFunctions in the XML structure overview -->
</cfg:HeuristicConfig>

Settable via
API?

Not possible.

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • DynamicReductionFunctions is only a container tag. No value(s), no attribute(s).

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

473

innovators for industry

XML tag DynamicReductionFunction

XML signature
(incl. defaults)

DynamicReductionFunction[]* (Units*)

’*’=optional; no ’*’=mandatory.

DynamicReductionFunction attribute value: ’mm and mm/s’.

XML path(s) <cfg:Configuration>  <cfg:MotionDecompositionConfig>  <cfg:HeuristicConfig> 
<cfg:DynamicReductionFunctions>  <cfg:DynamicReductionFunction …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:DynamicReductionFunction Units=“mm and mm/s“>
<cfg:DataPoint Length=“0.0“ Velocity=“2000“ />
<cfg:DataPoint Length=“27.0“ Velocity=“2000“ />
<cfg:DataPoint Length=“27.01“ Velocity=“700“ />
<cfg:DataPoint Length=“54.0“ Velocity=“700“ />
</cfg:DynamicReductionFunction>

Settable via
API?

slsc_cfg_select_heuristic

Behavior on
Module replay

No behavior as it is a container tag

Comment(s) • Purpose of the DynamicReductionFunction tag is to be able to define speed reduction
characteristics, see list bullet “Use case” below.

• The Heuristic cannot be applied, if no characteristic is defined at all
(= there is no DynamicReductionFunction).

• syncAXIS_1_8.xsd allows an unlimited number of DynamicReductionFunction tags.
Thus, any number of characteristics can be defined.

• The syncAXIS control instance is initialized with the values of the first (topmost)
DynamicReductionFunction tag (corresponds to
slsc_cfg_select_heuristic(HeuristicIndex = 0)).
Thus, the first (= topmost) characteristic is used as default.

• See also Chapter 2.10 ”About Heuristic and Characteristics for Speed Reductions”,
page 64.

• Use case: With long vectors (exceeding the length of half the scanner field of view)
executed with high velocities, the positioning stage might experience a higher dynamic
load than it is capable. For those cases, to reduce the combined velocity, a characteristic
can be created: for this purpose, the individual characteristic interpolation points (with
length and velocity information) are defined by means of DataPoint tags.
Furthermore, you can define dedicated characteristics (for example, for low-frequency
marking patterns and small high-frequency marking patterns) each in its own
DynamicReductionFunction tag. The desired characteristics is
set by slsc_cfg_select_heuristic(HeuristicIndex = [0…(DynamicReductionFunction – 1]).
Note that in rare cases (for example, with vectors that are a little longer than half the
scan head working field and therefore, do not exceed any limit values) the execution
time can be longer with a characteristic than without a characteristic.

• Non-use case: Many short vectors that follow each other.

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

474

innovators for industry

Comment(s)
(cont’d)

• HeuristicForJumpsOnly = true sets that the characteristic is applied only to
Jump Segments and not to Mark Segments.

DataPoint

• XML signature (incl. defaults): DataPoint[] (Length, Velocity)

• syncAXIS_1_8.xsd allows an unlimited number of DataPoint tags.

• An interpolation point of a characteristic.

• Format: double.

• Settable via API?: Not possible.

• Make sure that the DataPoint tags follow each other as shown in XML section example,
page 473:
– Ascending Length values
– Descending Velocity values

• Behavior on Module replay: Non-Standard behavior: The parameter value of the
replaying syncAXIS control instance is not applied. If you want to vary the
parameter value, then you need to record a new Module each time for this.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
13 Appendix F: Reference of syncAXISConfig.xml Tags

475

innovators for industry

XML tag HeuristicForJumpsOnly

XML signature
(incl. defaults)

HeuristicForJumpsOnly* = false

’*’=optional; no ’*’=mandatory.

HeuristicForJumpsOnly value: boolean.

XML path(s) <cfg:Configuration>  <cfg:MotionDecompositionConfig>  <cfg:HeuristicConfig> 
<cfg:HeuristicForJumpsOnly …>

XML structure
overview

See Chapter 13.1 ”xml-Structure Overview”, page 358.

XML section
example

<cfg:HeuristicForJumpsOnly>true</cfg:HeuristicForJumpsOnly>

Settable via
API?

Not possible.

Behavior on
Module replay

Non-Standard behavior: The parameter value of the replaying syncAXIS control instance is
not applied. If you want to vary the parameter value, then you need to record a new
Module each time for this.

Comment(s) • HeuristicForJumpsOnly refers to the characteristic created under DynamicReductionFunction
(which determines the syncAXIS-DLL-behavior with long vectors):
– true

The characteristic is applied only to Jump Segments but not to Mark Segments.
This setting avoids burn-ins and bad marking results when non-pulse-on-
demand lasers are used.

– false
The characteristic is applied to Jump Segments as well as to Mark Segments.

• The dynamic and position capabilities of scan device and positioning stage are not
taken into account for the Motion decomposition (motion assignment). This is another
reason why you always must always simulate every Job in advance before executing it
on hardware for the first time. This is the only way you can ensure that no limits are
violated. See Chapter 2.2 ”About the SAFE Use of syncAXIS control – General
Approach”, page 18.

Version info syncAXIS_1_8.xsd

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
14 Change Index

476

innovators for industry

14 Change Index

The following are changes in this manual due to the
technical evolution of the product as well as signif-
icant editorial changes.

Changes to document revision 1.9.19 en-US from document revision 0.9.18 en-US

Where

What

Global Document Revision

• 1.9.19 en-US

applies to syncAXIS control-software package

• V1.7.0

slsc_cfg_get_jump_time, page 128 Software change. New function.

Chapter 12 ”Appendix E:
Application Note – C#”, page 350

Editorial enhancement.

Change Index, page 476

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
14 Change Index

477

innovators for industry

Changes to document revision 1.9.20 en-US from document revision 1.9.19 en-US

Where

What

Global Document Revision

• 1.9.20 en-US

applies to syncAXIS control-software package

• V1.8.0

Chapter 5 ”Error Codes with
slsc_ctrl_get_error, Log File and
Console”, page 282

Software change. Deleted error code:
0x 00 00 00 00 nn nn nn nn RTC6 ERROR.

Chapter 12.4 ”Code Example 2 (C#)”,
page 357

Editorial enhancement.

EthMaxTimeout, page 386 Software change. New tag.

Change Index, page 476

syncAXIS-DLL – Application Programming Interface
Doc. Rev. 1.9.20 en-US
14 Change Index

478

innovators for industry

Notes

	syncAXIS-DLL – Application Programming Interface
	Contents
	1 About this Manual
	1.1 Related Documents
	1.2 Manufacturer
	1.3 Overview
	1.4 Glossary

	2 Software Development with the syncAXIS-DLL
	2.1 Safety
	2.2 About the SAFE Use of syncAXIS control – General Approach
	syncAXIS control Safety Features
	2.2.1 Identifying System Limits
	2.2.2 Establishing Safety Mechanisms
	2.2.3 Configuring Safe syncAXIS control Instances
	2.2.4 Simulating and Improving Jobs

	2.3 About the Main Structures of a syncAXIS-DLL-Based User Program (Exemplary)
	2.3.1 Structure to Comply with when Defining Jobs

	2.4 About Initializing syncAXIS control-based User Programs
	2.5 About the syncAXIS control Simulation Mode
	2.6 About Optimizing syncAXIS control-based User Programs
	2.6.1 Possible Optimizations
	2.6.2 Iterative Approach

	2.7 About Processes at Run Time of the User Program
	2.7.1 About the Buffers of the syncAXIS control Instances
	Avoiding Buffer Underruns

	2.7.2 About the Point in Time when Output Signals are actually set

	2.8 About the Logging in syncAXIS control
	2.9 About Automatically Controlling the Laser by syncAXIS control (“Automatic Laser Control“)
	2.9.1 Activation of the “Automatic Laser Control“
	2.9.2 Definition of the Channels and ActiveChannel
	2.9.3 About how ActiveChannel Values along a Contour are Calculated
	2.9.4 About Ramps
	Example – Linear (Simple) Ramp
	Source Code
	Explanatory Notes on the Source Code
	Settings for the Simulation
	Explanatory Notes on the Simulation Result

	Example – Multi-part (more Complex) Ramp
	Source Code
	Explanatory Notes on the Source Code
	Settings for the Simulation
	Explanatory Notes on the Simulation Result

	2.9.5 About the “Contour-dependent speed calculation“

	2.10 About Heuristic and Characteristics for Speed Reductions
	2.11 About Working with “Modules”
	2.12 About the Mode “Manual Positioning“
	2.12.1 Allowed/Not Allowed syncAXIS control Functions
	2.12.2 Example – Temporarily Releasing the Positioning Stage and Changing the Target Positioning Stage

	3 Functions Available in the API
	3.1 Functional Overview
	3.1.1 Configuration Functions (slsc_cfg_*)
	syncAXIS control instance-related Functions
	Functions for Changing the Configuration of the Present syncAXIS-DLL Instance
	Functions for Registering “Callback Events“

	3.1.2 Job Functions (slsc_list_*)
	Functions for Defining Job-Beginnings/Ends
	Functions for Defining Jumps
	Functions for Defining Markings
	Special Case: SpotDistance as an “ActiveChannel“
	About slsc_list_set_laser_on_move

	[*]dashed[*] Functions
	Functions for Changing Target Point Coordinates
	Functions for Defining Ramps (slsc_list_[para/multi_para]*-Functions)
	Functions for Setting Signals
	Functions for Changing Speeds
	Function for Changing Minimum Speeds
	Functions for Changing Trajectory planning Values
	Functions for Changing the Behavior of Blending Curves
	Function for the “Contour-dependent Speed Calculation“
	Function for Setting the Value of a Free Variable on the RTC6
	Function for Influencing the Laser Pulse Output by HalfPeriod/PulseLength
	Functions for “Modules”

	3.1.3 Control Functions (slsc_ctrl_*)
	Laser-related Functions
	Execution-related Functions
	Comparison of slsc_ctrl_stop_controlled and slsc_ctrl_stop

	Correction File-related Functions
	Error-related Functions
	Functions for Querying Measured Values
	Functions Only for Mode “Manual Positioning“
	Functions for Managing the Value of a Free Variable on the RTC6
	Functions for Optimizing Parameter Values
	Functions for Starting/Ending the Mode “Manual Positioning“
	Functions for Querying Positions
	Simulation Setting-related Function
	Functions for Setting Signals
	Function for Influencing the Laser Pulse Output by HalfPeriod/PulseLength

	3.1.4 Utility Functions (slsc_util_*)
	RTC6 board-related Function

	3.2 Alphabetical Overview
	3.3 Function Reference
	3.3.1 General Structure of the Reference Tables
	3.3.2 Data Types of the syncAXIS-DLL Functions
	3.3.3 Reference Tables
	slsc_cfg_acquire_stage (deprecated)
	slsc_cfg_delete
	slsc_cfg_delete_trajectory_config
	slsc_cfg_get_calculation_dynamics_jump_scan_device
	slsc_cfg_get_calculation_dynamics_mark_scan_device
	slsc_cfg_get_calculation_dynamics_stage
	slsc_cfg_get_dynamic_limits_scan_device
	slsc_cfg_get_dynamic_limits_stage
	slsc_cfg_get_dynamic_violation_reaction
	slsc_cfg_get_field_limits_scan_device
	slsc_cfg_get_field_limits_stage
	slsc_cfg_get_jump_time
	slsc_cfg_get_mode
	slsc_cfg_get_operation_status
	slsc_cfg_get_scan_device_dynamic_monitoring_level
	slsc_cfg_get_simulation_setting
	slsc_cfg_get_stage_dynamic_monitoring_level
	slsc_cfg_get_sync_axis_version
	slsc_cfg_get_trajectory_config
	slsc_cfg_initialize_copy
	slsc_cfg_initialize_from_file
	slsc_cfg_register_callback_job_end_planned
	slsc_cfg_register_callback_job_finished_executing
	slsc_cfg_register_callback_job_is_executing
	slsc_cfg_register_callback_job_loaded_enough
	slsc_cfg_register_callback_job_progress_planned
	slsc_cfg_register_callback_job_start_planned
	slsc_cfg_reinitialize
	slsc_cfg_reinitialize_from_file
	slsc_cfg_release_stage (deprecated)
	slsc_cfg_select_heuristic
	slsc_cfg_select_stage
	slsc_cfg_select_stage_axis (deprecated)
	slsc_cfg_set_bandwidth
	slsc_cfg_set_calculation_dynamics_jump_scan_device
	slsc_cfg_set_calculation_dynamics_mark_scan_device
	slsc_cfg_set_calculation_dynamics_stage
	slsc_cfg_set_contour_dependent_speed_control_2d
	slsc_cfg_set_dynamic_limits_scan_device
	slsc_cfg_set_dynamic_limits_stage
	slsc_cfg_set_dynamic_violation_reaction
	slsc_cfg_set_field_limits_scan_device
	slsc_cfg_set_field_limits_stage
	slsc_cfg_set_jump_speed
	slsc_cfg_set_list_handling_mode
	slsc_cfg_set_list_handling_mode_with_context
	slsc_cfg_set_mark_speed
	slsc_cfg_set_matrix_and_offset
	slsc_cfg_set_mode
	slsc_cfg_set_part_displacement
	slsc_cfg_set_rot_and_offset_2d
	slsc_cfg_set_scan_device_dynamic_monitoring_level
	slsc_cfg_set_simulation_setting
	slsc_cfg_set_stage_dynamic_monitoring_level
	slsc_cfg_set_trajectory_config
	slsc_ctrl_disable_laser
	slsc_ctrl_enable_laser
	slsc_ctrl_follow
	slsc_ctrl_get_error
	slsc_ctrl_get_error_count
	slsc_ctrl_get_exec_state
	slsc_ctrl_get_free_variable
	slsc_ctrl_get_job_characteristic
	slsc_ctrl_get_scan_device_position
	slsc_ctrl_get_simulation_filename
	slsc_ctrl_get_stage_position
	slsc_ctrl_get_syncaxis_simulation_filename
	slsc_ctrl_get_value
	slsc_ctrl_is_list_input_buffer_full
	slsc_ctrl_laser_signal_off
	slsc_ctrl_laser_signal_on
	slsc_ctrl_move_scanner_abs
	slsc_ctrl_move_stage_abs
	slsc_ctrl_refresh_correction_file
	slsc_ctrl_select_correction_file
	slsc_ctrl_set_free_variable
	slsc_ctrl_set_laser_pulses
	slsc_ctrl_start_execution
	slsc_ctrl_stop
	slsc_ctrl_stop_controlled
	slsc_ctrl_unfollow
	slsc_ctrl_write_analog_x
	slsc_ctrl_write_digital_out
	slsc_ctrl_write_digital_out_mask
	slsc_list_arc_abs
	slsc_list_begin
	slsc_list_begin_absolute
	slsc_list_begin_module
	slsc_list_begin_relative
	slsc_list_circle_2d_abs
	slsc_list_dashed_arc_abs
	slsc_list_dashed_circle_2d_abs
	slsc_list_dashed_mark_abs
	slsc_list_end
	slsc_list_jump_abs
	slsc_list_jump_abs_min_time
	slsc_list_mark_abs
	slsc_list_multi_para_arc_abs
	slsc_list_multi_para_circle_2d_abs
	slsc_list_multi_para_dashed_arc_abs
	slsc_list_multi_para_dashed_circle_2d_abs
	slsc_list_multi_para_dashed_mark_abs
	slsc_list_multi_para_mark_abs
	slsc_list_para_arc_abs
	slsc_list_para_circle_2d_abs
	slsc_list_para_dashed_arc_abs
	slsc_list_para_dashed_circle_2d_abs
	slsc_list_para_dashed_mark_abs
	slsc_list_para_disable
	slsc_list_para_enable
	slsc_list_para_jump_abs
	slsc_list_para_jump_abs_min_time
	slsc_list_para_mark_abs
	slsc_list_para_playback_module
	slsc_list_playback_module
	slsc_list_set_approx_blend_limit
	slsc_list_set_calculation_dynamics_jump_scan_device
	slsc_list_set_calculation_dynamics_mark_scan_device
	slsc_list_set_contour_dependent_speed_control_2d
	slsc_list_set_free_variable
	slsc_list_set_jump_speed
	slsc_list_set_laser_on_move
	slsc_list_set_laser_pulses
	slsc_list_set_mark_speed
	slsc_list_set_matrix_and_offset
	slsc_list_set_min_mark_speed
	slsc_list_set_rot_and_offset_2d
	slsc_list_suppress_spotdistance_control
	slsc_list_unsuppress_spotdistance_control
	slsc_list_wait_with_laser_off
	slsc_list_wait_with_laser_on
	slsc_list_write_analog_x
	slsc_list_write_digital_out
	slsc_list_write_digital_out_mask

	4 Standard Return Values of the syncAXIS-DLL Functions
	5 Error Codes with slsc_ctrl_get_error, Log File and Console
	6 Structures
	slsc_GeometryConfig
	slsc_MarkConfig
	slsc_MultiParaTarget
	slsc_ParaSection
	slsc_TrajectoryConfig
	VersionInfo

	7 Enumerated Types enum
	slsc_AnalogOutput
	slsc_BlendModes
	slsc_DynamicsMonitoringLevel
	slsc_DynamicViolationReaction
	slsc_ExecState
	slsc_JobCharacteristic
	slsc_ListHandlingMode
	slsc_MeasurementSignal
	slsc_OperationMode
	slsc_OperationStatus
	slsc_PositionType
	slsc_ScanDevice
	slsc_SimulationSetting
	slsc_SplineModes
	slsc_Stage

	8 Appendix A: Using syncAXIS control V1.2.4 and Higher with XL SCAN Multi-Head Systems
	8.1 About this Appendix
	8.2 Usage of syncAXIS control V1.2.4 and Higher
	8.2.1 Prerequisites for this Appendix
	8.2.2 Adapting syncAXISConfig.xml for syncAXIS control V1.2.4 and Higher
	Step 1 of 2: Adapting syncAXISConfig.xml Technically
	Step 2 of 2: Adapting syncAXISConfig.xml in Regards to Content

	8.2.3 Further Notes on the Use of syncAXIS control V1.2.4 and Higher

	8.3 About Transformations in syncAXIS control V1.2.4 and Higher

	9 Appendix B: Application Note – Handling Lists with syncAXIS control
	9.1 List Handling Mode “ReturnAtOnce”
	9.2 List Handling Mode “RepeatWhileBufferFull”
	9.3 List Handling Mode “RepeatWhilePredicate”

	10 Appendix C: Application Note – Marking Texts by Using Modules
	11 Appendix D: Application Note – Avoiding Buffer Underruns by Using Modules
	12 Appendix E: Application Note – C#
	12.1 Differences in the syncAXIS-DLL function signatures
	12.1.1 Notation der Datentypen
	12.1.2 Pointer-Replacements for C#

	12.2 Differences in the Use of Callback Functions
	12.3 Code Example 1 (C#)
	12.4 Code Example 2 (C#)

	13 Appendix F: Reference of syncAXISConfig.xml Tags
	13.1 xml-Structure Overview
	13.2 xml Tags
	Configuration
	GeneralConfig
	ACSController
	InitialOperationMode
	InitialListHandlingMode
	DynamicViolationReaction
	LogConfig
	LogfilePath
	Loglevel
	EnableConsoleLogging
	EnableFilelogging
	MaxLogfileSize
	MaxBackupFileCount
	BaseDirectoryPath
	SimulationConfig
	SimulationMode
	SimOutputFileDirectory
	BinaryOutput
	DisableFileOutput
	RTCConfig
	BoardIdentificationMethod
	ProgramFileDirectory
	Boards
	RTC6
	SerialNumber
	HeadA
	HeadB
	EthSearch
	Broadcast
	IP
	NetMask
	IPScan
	StartIp
	EndIp
	IPList
	IPAddress
	EthMaxTimeout
	ScanDeviceConfig
	DynamicLimits
	Velocity
	Acceleration
	Jerk
	CalculationDynamics
	MarkDynamics
	Acceleration
	Jerk
	JumpDynamics
	Acceleration
	Jerk
	FieldLimits
	XDirection
	YDirection
	ZDirection
	MonitoringLevel
	FocalLength
	Delay
	ScanDeviceList
	ScanDevice
	CorrectionFileList
	CorrectionFilePath
	Alignment
	Matrix
	T11
	T12
	T21
	T22
	Offset
	BasePartDisplacement
	Matrix
	T11
	T12
	T21
	T22
	Offset
	DefaultCorrectionFile
	LaserConfig
	LaserMode
	LaserPortCfg
	LaserOn
	Laser1
	Laser2
	LaserOutput
	LaserStandby
	QSwitchDelay
	FPulseKillerLength
	LaserControlFlags
	LaserDisable
	PulseSwitchSetting
	LaserSignalPhaseShift
	LaserOnSignalActiveLow
	Laser1Laser2SignalActiveLow
	LaserPulsesAtRisingEdge
	OutputSynchronizationOn
	AutomaticLaserControl
	ActiveChannel
	Channel
	AnalogOut1
	AnalogOut2
	PulseLength
	HalfPeriod
	SpotDistance
	Shift
	DataPoint
	VelocityFactor
	DataPoint
	TrajectoryConfig
	MarkConfig
	JumpSpeed
	MarkSpeed
	MinimalMarkSpeed
	LaserSwitchConfig
	LaserPreTriggerTime
	LaserSwitchOffsetTime
	LaserMinOffTime
	GeometryConfig
	MaxBlendRadius
	ApproxBlendLimit
	BlendMode
	AutoCyclicGeometry
	SplineConversionLengthLimit
	SplineMode
	VectorResolution
	StageConfig
	DelayShift
	CTIME
	MonitoringLevel
	StageList
	Stage
	FieldLimits
	XDirection
	YDirection
	ZDirection
	DynamicLimits
	Velocity
	Acceleration
	Jerk
	CalculationDynamics
	Velocity
	Acceleration
	Jerk
	Alignment
	Matrix
	T11
	T12
	T21
	T22
	Offset
	StageAxisX
	StageAxisY
	SlecEtherCATNodeID
	IOConfig
	DefaultOutputs
	LaserPinOut
	AnalogOut1
	AnalogOut2
	LaserInitSequence
	Delay
	SetLaserPinOut
	SetAnalogOut1
	SetAnalogOut2
	SetExt1DigitalOut
	LaserShutdownSequence
	Delay
	SetLaserPinOut
	SetAnalogOut1
	SetAnalogOut2
	SetExt1DigitalOut
	MotionDecompositionConfig
	FilterBandwidth
	HeuristicConfig
	DynamicReductionFunctions
	DynamicReductionFunction
	DataPoint
	HeuristicForJumpsOnly

	14 Change Index

